Particle Swarm Optimization for Multi-objective Control Design Using AT2-FLC in FPGA Device

  • Yazmin Maldonado
  • Oscar Castillo
  • Patricia Melin
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 294)


This research proposes the design, simulation and implementation of the optimization of type-2 membership functions for the Average Approximation of an Interval of Type-2 Fuzzy Logic Controller (AT2-FLC) using bio-inspired algorithms, such as Particle Swarm Optimization (PSO). The optimization only considers certain points of the membership functions, the fuzzy rules are not modified, so that the algorithm minimizes the runtime. Based on the concept of swarm intelligence, PSO is applied to membership functions parameter optimization of the AT2-FLC. Implementations and simulations are carried out on the FPGA device using the Xilinx System Generator. The optimization method was coded in Matlab. Comparisons were made between simulation and implementation of the AT2-FLC, to regulate the velocity of a DC motor. We compared the results of the AT2-FLC under uncertainty and the results are discussed. Experiments were performed by changing the number of bits for encoding the AT2-FLC in VHDL.

The main contribution of this research is the design, simulation and implementation of PSO of the AT2-FLC for real applications in FPGA. The AT2-FLC is targeted to a Xilinx Spartan 3AN XC3S700A device using Xilinx Foundation Environment.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castillo, O.: Interval Type-2 Fuzzy Logic for Control Applications. In: IEEE International Conference on Granular Computing, pp. 79–84 (2010)Google Scholar
  2. 2.
    Castillo, O.: Interval Type-2 Mamdani Fuzzy Systems for Intelligent Control. In: Trillas, E., Bonissone, P.P., Magdalena, L., Kacprzyk, J. (eds.) Combining Experimentation and Theory. STUDFUZZ, vol. 271, pp. 163–178. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications. STUDFUZZ, vol. 272. Springer, Heidelberg (2012)MATHCrossRefGoogle Scholar
  4. 4.
    Castillo, O., Melin, P.: Optimization of Type-2 Fuzzy Systems Based on Bio-Inspired Methods: A Concise Review. Information Sciences 205(1), 1–19 (2012)CrossRefGoogle Scholar
  5. 5.
    Clerk, M.: Particle Swarm Optimization. ISTE Ltd. (2006)Google Scholar
  6. 6.
    Gutierrez-Rios, J., Brox, P., Fernandez-Hernandez, F., Baturone, I., Sanchez-Solano, A.: Fuzzy Motion Adaptive Algorithm and its Hardware Implementation for Video de-interlacing. Applied Soft Computing 11, 3311–3320 (2011)CrossRefGoogle Scholar
  7. 7.
    Jantzen, J.: Tunning of Fuzzy PID Controllers, Technical University of Denmark, Department of Automation, pp. 1–22 (1998)Google Scholar
  8. 8.
    Klir, G.J., Mark, J.W.: Uncertainty Based Information: Elements of Generalized Information Theory. Physica-Verlag (1999)Google Scholar
  9. 9.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms. Springer (2000)Google Scholar
  10. 10.
    Maldonado, Y., Castillo, O., Melin, P.: Design of a Type-2 Fuzzy Controller and its Comparison with Type-1 Fuzzy and PID Controllers for Velocity Regulation in a DC Motor. In: Proceedings of the World Conference on Soft Computing, pp. 1–6 (2011)Google Scholar
  11. 11.
    Mendel, J.M.: Uncertainty Rule Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper-Saddle River (2001)Google Scholar
  12. 12.
    Mendel, J.M.: Type-2 Fuzzy Sets and Systems: an Overview. IEEE Computational Intelligence Magazine 2, 20–29 (2007)Google Scholar
  13. 13.
    Montiel, O., Sepúlveda, R., Maldonado, Y., Castillo, O.: Design and Simulation of the Type-2 Fuzzification Stage: Using Active Membership Functions. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems. SCI, vol. 257, pp. 273–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) Anal. and Des. of Intel. Sys. using SC Tech. ASC, vol. 41, pp. 45–52. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Sepúlveda, R., Montiel, O., Olivas, J., Castillo, O.: Methodology to Test and Validate a VHDL Inference Engine of a Type-2 FIS, through the Xilinx System Generator. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems. SCI, vol. 257, pp. 295–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yazmin Maldonado
    • 1
  • Oscar Castillo
    • 1
  • Patricia Melin
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations