A Genetic Algorithm for the Problem of Minimal Brauer Chains for Large Exponents

  • Arturo Rodriguez-Cristerna
  • Jose Torres-Jimenez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 294)


Exponentiation is an important and complex task used in cryptosystems such RSA. The reduction of the number of multiplications needed during the exponentiation can significantly improve the execution time of cryptosystems. The problem of determining the minimal sequence of multiplications required for performing a modular exponentiation can be formulated using the concept of Brauer Chains.

This paper, shows a new approach to face the problem of getting Brauer Chains of minimal length by using a Genetic Algorithm (GA). The implementation details of the GA includes a representation based on the Factorial Number System (FNS), a mixture of Neighborhood Functions (NF), a mixture of Distribution Functions (DF) and a fine-tuning process to set the parameter values. We compare the proposed GA approach with another relevant solutions presented in the literature by using three benchmarks considered difficult to show that it is a viable alternative to solve the problem of getting shortest Brauer Chains.


Addition Chains Genetic Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, K.: Optimizing effectiveness and efficiency of software testing: A hybrid approach. Ph.D. thesis, North Carolina State University (2006)Google Scholar
  2. 2.
    Bergeron, F., Berstel, J., Brlek, S.: Efficient computation of addition chains. Journal de Théorie des Nombres de Bordeaux 6(1), 21–38 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bleichenbacher, D., Flammenkamp, A.: An efficient algorithm for computing shortest addition chains. SIAM Journal of Discrete Mathematics 10(1), 15–17 (1997)Google Scholar
  4. 4.
    Clift, N.: Calculating optimal addition chains. Computing 91, 265–284 (2011) 10.1007/ s00607-010-0118-8, MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, M., Gibbons, P., Mugridge, W., Colbourn, C.: Constructing test suites for interaction testing. In: Proceedings of the 25th International Conference on Software Engineering, Portland, Oregon, USA, pp. 38–48 (May 2003)Google Scholar
  6. 6.
    Cruz-Cortés, N., Rodríguez-Henríquez, F., Coello Coello, C.A.: An artificial immune system heuristic for generating short addition chains. IEEE Transactions on Evolutionary Computation 12(1), 1–24 (2008)CrossRefGoogle Scholar
  7. 7.
    Cruz-Cortés, N., Rodríguez-Henríquez, F., Juárez-Morales, R., Coello Coello, C.A.: Finding Optimal Addition Chains Using a Genetic Algorithm Approach. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005, Part I. LNCS (LNAI), vol. 3801, pp. 208–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.: Addition chain length minimization with evolutionary programming. In: Proceedings of the I Congreso Internacional de Electrónica, Instrumentación y Computación, Minatitlan, Veracruz, México (2011)Google Scholar
  9. 9.
    Domínguez-Isidro, S., Efren, M.M.: Addition chain length minimization with evolutionary programming. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, Ireland, pp. 59–60. ACM (2011)Google Scholar
  10. 10.
    Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer (2003)Google Scholar
  11. 11.
    Flammenkamp, A.: Shortest addition chains repository (June 2012),
  12. 12.
    Gelgi, F., Onus, M.: Heuristics for Minimum Brauer Chain Problem. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 47–54. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  13. 13.
    Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu Search for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 382–393. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  14. 14.
    Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998), MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Guy, R.: Unsolved problems in number theory, 3rd edn., vol. 1. Springer (2004)Google Scholar
  16. 16.
    Jose-Garcia, A., Romero-Monsivais, H., Hernandez-Morales, C.G., Rodriguez-Cristerna, A., Rivera-Islas, I., Torres-Jimenez, J.: A Simulated Annealing Algorithm for the Problem of Minimal Addition Chains. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS (LNAI), vol. 7026, pp. 311–325. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  17. 17.
    Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley (1997)Google Scholar
  18. 18.
    Kuhn, D., Wallace, D., Gallo Jr., A.: Software fault interactions and implications for software testing. IEEE Transactions on Software Engineering 30(6), 418–421 (2004)CrossRefGoogle Scholar
  19. 19.
    Mignotte, M., Tall, A.: A note on addition chains. International Journal of Algebra 5(6), 269–274 (2011)MathSciNetMATHGoogle Scholar
  20. 20.
    Nedjah, N., de Macedo Mourelle, L.: Efficient Parallel Modular Exponentiation Algorithm. In: Yakhno, T. (ed.) ADVIS 2002. LNCS, vol. 2457, pp. 405–414. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  21. 21.
    Nedjah, N., de Macedo Mourelle, L.: Finding Minimal Addition Chains Using Ant Colony. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 642–647. Springer, Heidelberg (2004), CrossRefGoogle Scholar
  22. 22.
    Nedjah, N., de Macedo Mourelle, L.: Towards minimal addition chains using ant colony optimization. Journal of Mathematical Modelling and Algorithms 5, 525–543 (2006), MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Nedjah, N., Mourelle, L.: Efficient Pre-Processing for Large Window-Based Modular Exponentiation Using Genetic Algorithms. In: Chung, P.W.H., Hinde, C.J., Ali, M. (eds.) IEA/AIE 2003. LNCS, vol. 2718, pp. 165–194. Springer, Heidelberg (2003), Google Scholar
  24. 24.
    Osorio-Hernandez, L., Mezura-Montes, E., Cruz-Cortes, N., Rodriguez-Henriquez, F.: A genetic algorithm with repair and local search mechanisms able to find minimal length addition chains for small exponents. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1422–1429 (May 2009)Google Scholar
  25. 25.
    Rangel-Valdez, N., Torres-Jiménez, J., Bracho-Ríos, J., Quiz-Ramos, P.: Problem and algorithm fine-tuning - a case of study using bridge club and simulated annealing. In: Dourado, A., Rosa, A.C., Madani, K. (eds.) IJCCI, pp. 302–305. INSTICC Press (2009)Google Scholar
  26. 26.
    Rodriguez-Cristerna, A., Torres-Jiménez, J., Rivera-Islas, I., Hernandez-Morales, C.G., Romero-Monsivais, H., Jose-Garcia, A.: A Mutation-Selection Algorithm for the Problem of Minimum Brauer Chains. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part II. LNCS, vol. 7095, pp. 107–118. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  27. 27.
    Thurber, E.: Efficient generation of minimal length addition chains. SIAM Journal on Computing 28(4), 1247–1263 (1999)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Torres-Jimenez, J.: Covering array repository (June 2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arturo Rodriguez-Cristerna
    • 1
  • Jose Torres-Jimenez
    • 1
  1. 1.Information Technology LaboratoryCINVESTAV-TamaulipasCd. Victoria Tamps.Mexico

Personalised recommendations