Advertisement

High-Performance Architecture for the Modified NSGA-II

  • Josué Domínguez
  • Oscar Montiel-Ross
  • Roberto Sepúlveda
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 294)

Abstract

NSGA-II is one of the most popular algorithms for solving Multiobjective Optimization Problems. It has been used to solve different real-world optimization problems; however, NSGA-II has been criticized for its high computational cost and bad performance on applications with more than two objective functions. In this paper, we propose a high-performance architecture for the NSGA-II using parallel computing, for evaluation functions and genetic operators. In the proposed architecture, the Mishra Fast Algorithm for finding the Non Dominated Set was used. In this paper, we propose a modification in the sorting process for the NSGA-II that improves the distribution of the solutions in the Pareto front. Results for five different test functions using distinct crossover and mutation operators to test performance are presented.

Keywords

Genetic Algorithm Multi-Objective Optimization Pareto Optimal NSGA – II 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rangaiah, G.P.: Multi-Objective Optimization: Techniques and Applications in Chemical Engineering. World Scientific Publishing CO. Pthe. Ltd. (2009)Google Scholar
  2. 2.
    Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization: Theoretical Advances And Applications. Springer (2005)Google Scholar
  3. 3.
    Konak, A., Coit, D.W., Smith, A.E.: Multi - objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91 (2006)Google Scholar
  4. 4.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  5. 5.
    Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1998)MATHGoogle Scholar
  6. 6.
    Wright, A.H.: Genetic algorithms for real parameter optimization. In: Foundations of Genetic Algorithms, pp. 205–218. Morgan Kaufmann (1991)Google Scholar
  7. 7.
    Michalewicz, Z., Logan, T.: Evolutionary operators for continuous convex parameter space. In: Sebald, L.A.V. (ed.) Proceeding of 3rd Annual Conference on Evolutionary Programming, p. 8497. World Scientific (1994)Google Scholar
  8. 8.
    Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Whitley, D.L. (ed.) Foundation of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)Google Scholar
  9. 9.
    Agrawal, R.B., Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Tech. Rep. (1994)Google Scholar
  10. 10.
    Deb, K., Georg Beyer, H.: Self-adaptive genetic algorithms with simulated binary crossover. Complex Systems 9, 431–454 (1999)Google Scholar
  11. 11.
    Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation 188(1), 895–911 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)MATHGoogle Scholar
  13. 13.
    Makinen, R.A., Toivanen, J., Toivanen, M.J., Periaux, J.: Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithmsGoogle Scholar
  14. 14.
    Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation (1994)Google Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc. (1989)Google Scholar
  16. 16.
    Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition), Vanderbilt University (1984)Google Scholar
  17. 17.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications (1999)Google Scholar
  18. 18.
    Deb, K., Pratap, A., Agarwal, S.R., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation (2002)Google Scholar
  19. 19.
    Deb, K., Pratap, A., Agarwal, S.R., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation (2002)Google Scholar
  20. 20.
    Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J., Martin, J.: PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2001 (2001)Google Scholar
  21. 21.
    Li, M., Liu, L., Lin, D.: A fast steady-state epsilon-dominance multi-objective evolutionary algorithm. Comput. Optim. Appl. (2011)Google Scholar
  22. 22.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley (2001)Google Scholar
  23. 23.
    Coello, C.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer (2007)Google Scholar
  24. 24.
    Abido, M.A.: Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evolutionary Computation (2006)Google Scholar
  25. 25.
    Formiga, K.T.M., Chaudhry, F.H., Cheung, P.B., Reis, L.F.R.: Optimal Design of Water Distribution System by Multiobjective Evolutionary Methods. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 677–691. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Ahmed, F., Deb, K.: Multi-objective path planning using spline representation. In: ROBIO (2011)Google Scholar
  27. 27.
    Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundation of Genetic Algorithms, vol. 2, pp. 187–182 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Josué Domínguez
    • 1
  • Oscar Montiel-Ross
    • 1
  • Roberto Sepúlveda
    • 1
  1. 1.Instituto Politécnico Nacional – CITEDITijuanaMéxico

Personalised recommendations