Diagnostik und Prognose der Zerebralparese

Chapter

Zusammenfassung

Die Diagnosestellung der Zerebralparese lässt sich in Frühdiagnostik und Diagnostik der manifesten Zerebralparese trennen. Seit Langem bemüht man sich, exakte Prädiktoren zu entwickeln, die das Risiko eines Neugeborenen eine Zerebralparese zu entwickeln ausreichend sicher vorhersagen können. Dies wäre nicht nur für die Betroffenen, sondern auch für das Gesundheitssystem eine große Hilfe, ließe sich doch damit die Zahl unnötig behandelter Kinder deutlich reduzieren. Obwohl diesbezüglich in den letzten Jahren klare Fortschritte erzielt werden konnten, steht uns bis heute noch kein ausreichend sicheres Diagnostikum zur Verfügung. Die klinische Diagnose der Patienten mit Zerebralparese lässt sich in einen neurologischen und einen neuroorthopädischen Teil gliedern. Beide Bereiche müssen mit ausreichender Qualität vom Kinderarzt und vom Orthopäden beherrscht werden; auch hier ist der gegenseitige Informationsaustausch wertvoll. Zu den wichtigen instrumentellen Untersuchungen zählt die Röntgendiagnostik mit standardisierter Befunderhebung. Weitere Diagnosemaßnahmen sind an spezifische Fragestellungen gebunden. Die Prognose gliedert sich in einen motorischen und einen psychosozialen Bereich. Beide sollten frühzeitig evaluiert und durch regelmäßige Kontrollen verfeinert werden. Spezielle Funktionsscores und Klassifikationen helfen ein reproduzierbares Bild des Patienten zu entwickeln. Nur mit diesem Vorgehen wird die zielgerichtete Indikationsstellung möglich.

Literatur

  1. Adde L, Helbostad JL, Jensenius AR et al (2010) Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study. Dev Med Child Neurol 52(8):773–778PubMedGoogle Scholar
  2. Allington NJ, Leroy N, Doneux C (2002) Ankle joint range of motion measurements in spastic cerebral palsy children: intraobserver and interobserver reliability and reproducibility of goniometry and visual estimation. J Pediatr Orthop B 11(3):236–239PubMedGoogle Scholar
  3. Ashworth B (1982) Electrical treatment of spasticity. Scand J Rehabil Med 14:177–182Google Scholar
  4. Atkinson HW (1986) Principles of assessment. In: Downie PA (Hrsg) Cash’s textbook of neurology for physiotherapists, 4. Aufl. Faber & Faber, London, S 126–128Google Scholar
  5. Barbi E, Massaro M, Badina L (2011) Measuring pain in children with cognitive impairment and cerebral palsy: a multi-regional survey in the use of specific pain scales. Pediatr Emerg Care 27(12):1216PubMedGoogle Scholar
  6. Bar-On L, Aertbelien E, Molenaers G et al (2014) Instrumented assessment of the effect of botulinum toxin-A in the medial hamstrings in children with cerebral palsy. Gait Posture 39(1):17–22 (http://dx.doi.org/10.1016/j.gaitpost.2013.05.018)PubMedGoogle Scholar
  7. Beckung E, Carlsson G, Carlsdotter S et al (2007) The natural history of gross motor development in children with cerebral palsy aged 1 to 15 years. Dev Med Child Neurol 49:751–756PubMedGoogle Scholar
  8. Bell KJ, Ounpuu S, DeLuca PA et al (2002) Natural progression of gait in children with cerebral palsy. J Pediatr Orthop 22(5):677–682PubMedGoogle Scholar
  9. Blair E (2011) Epidemiology of cerebral palsy. In: Panteliadis CP (Hrsg) Cerebral palsy. Dustri, München, S 27–37Google Scholar
  10. Bleck EE (1975) Locomotor prognosis in cerebral palsy. Dev Med Child Neurol 17:18–25PubMedGoogle Scholar
  11. Bleck EE (1979) Orthopaedic management of cerebral palsy. Saunders, PhiladelphiaGoogle Scholar
  12. Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth Scale of muscle spasticity. Phys Ther 67:206–207PubMedGoogle Scholar
  13. Boldingh EJ, der Jacobs-van Bruggen MA, Lankhorst GJ et al (2004) Assessing pain in patients with severe cerebral palsy: development, reliability, and validity of a pain assessment instrument for cerebral palsy. Arch Phys Med Rehabil 85(5):758–766PubMedGoogle Scholar
  14. Bottos M, Feliciangeli A, Sciuto L et al (2001) Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol 43:516–528PubMedGoogle Scholar
  15. Bower E (2004) Goal setting and the measurement of change. In: Scrutton D, Damiano DL, Mayston M (Hrsg) Management of the motor disorders of children with cerebral palsy. Clinics in developmental medicine, Bd. 161. Mac Keith Press, London, S 32–51Google Scholar
  16. Boyd RN, Graham HK (1999) Objective clinical measures in the use of botulinumtoxin A in the management of cerebral palsy. Eur J Neurol 6(4):S23–S36Google Scholar
  17. Charles JR (2008) Typical and atypical development of the upper limb in children. In: Eliasson AC, Burtner PA (Hrsg) Improving hand function in children with cerebral palsy: theory, evidence and intervention. Clinics in developmental medicine, Bd. 178. Mac Keith Press, London, S 147–159Google Scholar
  18. Constantinou JC, Adamson-Macedo EN, Mirmiran M et al (2007) Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J Perinatol 27(4):225–229PubMedGoogle Scholar
  19. Crompton J, Galea MP, Phillips B (2007) Hand-held dynamometry for muscle strength measurement in children with cerebral palsy. Dev Med Child Neurol 49:106–111PubMedGoogle Scholar
  20. Crothers B, Paine RS (1959) The natural history of cerebral palsy. Harvard University Press, CambridgeGoogle Scholar
  21. Crothers B, Paine RS (1988) The natural history of cerebral palsy. Mac Keith Press, London (Erstveröff. 1959)Google Scholar
  22. Da Paz Junior AC, Burnett SM, Braga LW (1994) Walking prognosis in cerebral palsy: a 22-year retrospective analysis. Dev Med Child Neurol 36(2):130–134PubMedGoogle Scholar
  23. Darsaklis V, Snider LM, Majnemer A et al (2011) Predictive validity of Prechtl’s method on the qualitative assessment of general movements: a systematic review of the evidence. Dev Med Child Neurol 53:896–906PubMedGoogle Scholar
  24. Dobson F, Boyd RN, Parrott GR et al (2002) Hip surveillance in children with cerebral palsy. J Bone Joint Surg 84B:720–726Google Scholar
  25. Domholdt E (1993) Physical therapy research: principles and applications. Saunders, PhiladelphiaGoogle Scholar
  26. Einspieler C, Marschik PB, Prechtl HFR (2011) Early markers for cerebral palsy. In: Panteliadis CP (Hrsg) Cerebral palsy. Dustri, München, S 81–87Google Scholar
  27. Einspieler C, Prechtl HFR (2001) Der Vorhersagewert von General Movements beim jungen Säugling. In: Heinen F, Bartens W (Hrsg) Das Kind und die Spastik: Erkenntnisse der Evidence-based Medicine zur Cerebralparese. Huber, Bern, S 73–87Google Scholar
  28. Einspieler C, Prechtl HFR, Bos AF et al (2004) Prechtl’s method on the qualitative assessment of general movements in preterm, term and young infants Clinics in developmental medicine, Bd. 16. Mac Keith Press, London, S 1–91Google Scholar
  29. Engel JM, Kartin D, Jensen MP (2002) Pain treatment in persons with cerebral palsy: frequency and helpfulness. Am J Phys Med Rehabil 81:291–296PubMedGoogle Scholar
  30. Exner GU (2003) Normalwerte in Wachstum und Entwicklung, 2. Aufl. Thieme, StuttgartGoogle Scholar
  31. Fedrizzi E, Facchin P, Marzaroli M et al (2000) Predictors of independent walking in children with spastic diplegia. J Child Neurol 15:228–234PubMedGoogle Scholar
  32. Fenichel GM (2009) Clinical pediatric neurology: a signs and symptoms approach, 6. Aufl. Saunders Elsevier, Philadelphia, S 301–302Google Scholar
  33. Flehmig I (1983) Normale Entwicklung des Säuglings und ihre Abweichungen. Thieme, StuttgartGoogle Scholar
  34. Foerster O (1906) Die Kontrakturen bei den Erkrankungen der Pyramidenbahn. S. Karger, BerlinGoogle Scholar
  35. Freud S (1897) Die infantile Cerebrallähmung. A. Hölder, WienGoogle Scholar
  36. Gage JR (1992) Distal hamstring lengthening/release and rectus femoris transfer. In: Sussman MD (Hrsg) The diplegic child. American Academy of Orthopaedic Surgeons, Rosemont, S 317–339Google Scholar
  37. Gage JR (2004) Treatment principles for crouch gait. In: Gage JR (Hrsg) Treatment of gait problems in cerebral palsy. Mac Keith Press, London, S 382–397Google Scholar
  38. Gannotti ME, Gordon GE, Nahornjak NT et al (2007) Postoperative gait velocity and mean knee flexion in stance of ambulatory children with spastic diplegia four years or more after multilevel surgery. J Pediatr Orthop 27:451–456PubMedGoogle Scholar
  39. Gericke T (2006) Postural management in children with cerebral palsy: consensus statement. Dev Med Child Neurol 48:244PubMedGoogle Scholar
  40. Göb A (1967) Die fortlaufende Überprüfung der frühkindlichen Hirnschäden an der motorischen Entwicklung und dem Reflexverhalten. Z Orthop 103:221–240PubMedGoogle Scholar
  41. Goldberg MJ (1991) Measuring outcomes in cerebral palsy. J Pediatr Orthop 11:682–685PubMedGoogle Scholar
  42. Gough M, Eve LC, Robinson RO et al (2004) Short-term outcome of multilevel surgical intervention in spastic diplegic cerebral palsy compared with the natural history. Dev Med Child Neurol 46(2):91–97PubMedGoogle Scholar
  43. Graham HK, Harvey A, Rodda J et al (2004) The functional mobility scale (FMS). J Pediatr Orthop 24:514–520PubMedGoogle Scholar
  44. Hägglund G, Andersson S, Düppe H et al (2005a) Prevention of dislocation of the hip in children with cerebral palsy: the first ten years of a population-based prevention programme. J Bone Joint Surge Br 87(1):95–101Google Scholar
  45. Hägglund G, Andersson S, Düppe H et al (2005b) Prevention of severe contractures might replace multilevel surgery in cerebral palsy: results of a population-based health care programme and new techniques to reduce spasticity. J Pediatr Orthop B 14(4):269–273PubMedGoogle Scholar
  46. Haley SM, Coster WJ, Ludlow LH et al (1992) Pediatric evaluation of disability inventory, development, standardisation and administration manual. Sidcup, KentGoogle Scholar
  47. Hanna SE, Rosenbaum PL, Bartlett DJ et al (2009) Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 51(4):295–302PubMedGoogle Scholar
  48. Harvey A, Baker R, Morris ME et al (2010) Does parent report measure performance? A study of the construct validity of the FMS. Dev Med Child Neurol 52:181–185PubMedGoogle Scholar
  49. Henderson R, Gilbert SR, Clement ME (2005) Altered skeletal maturation in moderate to severe cerebral palsy. Dev Med Child Neurol 47:229–236PubMedGoogle Scholar
  50. Hislop H, Montgomery J (1995) Daniel‘s and Worthingham‘s muscle testing techniques of manual examination. Saunders, PhiladelphiaGoogle Scholar
  51. Hoppenfeld S (1982) Klinische Untersuchung der Wirbelsäule und der Extremitäten. G. Fischer, StuttgartGoogle Scholar
  52. Hurvitz EA, Marciniak CM, Daunter AK et al (2013) Functional outcomes of childhood dorsal rhizotomy in adults and adolescents with cerebral palsy. J Neurosurg Pediatr 11(4):380–388PubMedGoogle Scholar
  53. Johnson DC, Damiano DL, Abel MF (1997) The evolution of gait in childhood and adolescent cerebral palsy. J Pediatr Orthop 17(3):392–396PubMedGoogle Scholar
  54. Johnson GR (2002) Outcome measures of spasticity. Eur J Neurol 9(1):10–16PubMedGoogle Scholar
  55. Jozwiak M, Harasymczuk P, Koch A et al (2011) Incidence and risk factors of hip joint pain in children with severe cerebral palsy. Disabil Rehabil 33(15–16):1367–1372PubMedGoogle Scholar
  56. Keenan WN, Rodda J, Wolfe R et al (2004) The static examination of children and young adults with cerebral palsy in the gait analysis laboratory: technique and observer agreement. J Pediatr Orthop B 13(1):1–8PubMedGoogle Scholar
  57. Kendall HO, Kendall FP, Woodsworth GE (1971) Muscles-testing and function, 2. Aufl. Williams & Wilkins, BaltimoreGoogle Scholar
  58. Kilgour GM, McNair PJ, Stott NS et al (2005) Range of motion in children with spastic diplegia, GMFCS I-II compared to age and gender matched controls. Phys Occup Ther Pediatr 25(3):61–79PubMedGoogle Scholar
  59. King W, Levin R, Schmidt R et al (2003) Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev Med Child Neurol 45:12–16PubMedGoogle Scholar
  60. Koop SE (2009a) Muskuloskeletal growth and development. In: Gage JR, Schwartz MH, Koop SE, Novacheck TF (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 21–30Google Scholar
  61. Koop SE et al (2009b) Postoperative care and rehabilitation. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy, 2. Aufl. Clinics in developmental medicine, Bd. 180/181. Mac Keith Pres, London, S 534–545Google Scholar
  62. Kurian MA (2013) What is the role of dopamine in childhood neurological disorders? Dev Med Child Neurol 55:493–494PubMedGoogle Scholar
  63. Kurian MA, Gissen P, Smith M et al (2011) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10:721–733PubMedGoogle Scholar
  64. Levitt S (1982) Treatment of cerebral palsy and motor delay. Blackwell Scientific, OxfordGoogle Scholar
  65. Lieber RL (2010a) Skeletal muscle adaptation to spasticity. In: Lieber RL (Hrsg) Skeletal muscle structure, function, and plasticity, 3. Aufl. Wolters-Kluwer, Philadelphia, S 271–292Google Scholar
  66. Lieber RL (2010b) Skeletal muscle structure, function, and plasticity, 3. Aufl. Wolters-Kluwer, PhiladelphiaGoogle Scholar
  67. Lonstein JE et al (1987) Patient evaluation. In: Bradford DS, Lonstein JE, Moe JH (Hrsg) Moe’s textbook of scoliosis and other spinal deformities. S. Aufl. Saunders, Philadelphia, S 47–88Google Scholar
  68. Maffiuletti NA (2010) Current concepts review: assessment of hip and knee muscle function in orthopaedic practice and research. J Bone Joint Surg Am 92(1):220–229PubMedGoogle Scholar
  69. Magee DJ (1997) Orthopaedic physical assessment, 3. Aufl. Saunders, PhiladelphiaGoogle Scholar
  70. Majnemer A, Bourbonnais D, Frak V (2008) The role of sensation for hand function in children with cerebral palsy. In: Eliasson AC, Burtner PA (Hrsg) Improving hand function in children with cerebral palsy: theory, evidence and intervention. Clinics in developmental medicine, Bd. 178. Mac Keith Press, London, S 134–146Google Scholar
  71. Malhotra S, Pandyan AD, Day CR et al (2009) Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil 23(7):651–658PubMedGoogle Scholar
  72. Malouin F (1995) Observational gait analysis. In: Craik RL, Oatis CA (Hrsg) Gait analysis. Mosby, St Louis, S 112–124Google Scholar
  73. Maslon A, Jozwiak M, Pawlak M et al (2011) Hip joint pain in spastic dislocation: aetiological aspects. Dev Med Child Neurol 53(11):1019–1023PubMedGoogle Scholar
  74. Massaro M, Pastore S, Ventura A et al (2013) Pain in cognitively impaired children: a focus for general pediatricians. Eur J Pediatr 172(1):9–14PubMedGoogle Scholar
  75. McDowell BC, Hewitt V, Nurse A et al (2000) The variability of goniometric measurements in ambulatory children with spastic cerebral palsy. Gait Posture 12(2):114–121PubMedGoogle Scholar
  76. McNee AE, Gough M, Shortland AP (2007) The effect of anaesthesia on the assessment of hamstring length in spastic cerebral palsy. J Pediatr Orthop B 16(1):35–38PubMedGoogle Scholar
  77. Molnar GE, Gordon SV (1974) Predictive value of clinical signs for early prognostication of motor function in cerebral palsy. (Paper submitted for AACP)Google Scholar
  78. Msall ME, di Gaudio K (1994) WEE-FIM, normative sample of an instrument for tracking functional independence in children. Clin Pediatr 33:431–438Google Scholar
  79. Mudge AJ, Bau KV, Purcell LN et al (2013) Normative reference values for lower limb joint range, bone torsion, and alignment in children aged 4-16 years. J Pediatr Orthop 23 B 23(1):15–25Google Scholar
  80. Murphy KP, Molnar GE, Lankasky K (1995) Medical and functional status of adults with cerebral palsy. Dev Med Child Neurol 37:1075–1084PubMedGoogle Scholar
  81. Ng J, Tuschl K, Heales SJR et al (2012) Clinical and biochemical delineation of patients with TH gene-negative severe infantile dopamine deficiency. J Inherit Metab Dis 31:139Google Scholar
  82. Nordmark E, Hägglund G, Lauge-Pedersen H et al (2009) Development of lower limb range of motion from early childhood to adolescence in cerebral palsy: a population-based study. BMC Med 7(65):1–11Google Scholar
  83. Paine RS (1962) On the treatment of cerebral palsy: the outcome of 177 patients, 74 totally untreated. Pediatrics 29:605–616PubMedGoogle Scholar
  84. Paine RS (1966) Cerebral palsy: symptoms and signs of diagnostic and prognostic significance. In: Adams JP (Hrsg) Current practice in orthopaedic surgery. Mosby, St. Louis, S 39–59Google Scholar
  85. Palisano R, Rosenbaum P, Walter S et al (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39(4):214–223PubMedGoogle Scholar
  86. Parrot J, Boyd RN, Dobson F et al (2002) Hip displacement in spastic cerebral palsy: repeatability of radiological measurement. J Pediatr Orthop 22(5):660–667Google Scholar
  87. Perlman JM (1998) White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome. Early Hum Develop 53:99–120Google Scholar
  88. Perry J (1992) Gait analysis: normal and pathological function. Mc Graw Hill, New YorkGoogle Scholar
  89. Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function, 2. Aufl. Slack, ThorofareGoogle Scholar
  90. Platz T, Eickhof C, Nuyens G et al (2005) Clinical scales for the assessment of spasticity, associated phenomena and function: a systematic review of the literature. Disabil Rehabil 27:7–18PubMedGoogle Scholar
  91. Prechtl HFR, Einspieler C, Cioni G et al (1997) An early marker for neurological deficits after perinatal brain lesions. Lancet 349:1361–1363PubMedGoogle Scholar
  92. Ramstad K, Jahnsen R, Skjeldal OH et al (2011) Characteristics of recurrent musculoskeletal pain in children with cerebral palsy aged 8 to 18 years. Dev Med Child Neurol 53(11):1013–1018PubMedGoogle Scholar
  93. Read H, Hazlewood ME, Hilman SJ et al (2003) Edinburgh visual gait score for use in cerebral palsy. J Pediatr Orthop 23:296–301PubMedGoogle Scholar
  94. Richardson D (1998) Clinical rating of spasticity. In: Sheean G (Hrsg) Spasticity rehabilitation. Churchill Communications. Cambridge University pess, London, S 39–50Google Scholar
  95. Robinson RO, Mc Carthy GT (1984) Cerebral palsy. In: Mc Carthy G (Hrsg) The physically handicapped child. Faber & Faber, London, S 115–145Google Scholar
  96. Romeo DM, Ricci D, Baranello D et al (2011) The forward parachute reaction and independent walking in infants with brain lesions. Dev Med Child Neurol 53:636–640PubMedGoogle Scholar
  97. Rose J, McGill KC (2005) Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol 47(5):329–336PubMedGoogle Scholar
  98. Rosenbaum P (2007) The natural history of gross motor development in children with cerebral palsy aged 1 to 15 years. Dev Med Child Neurol 49(10):724PubMedGoogle Scholar
  99. Russell DJ, Rosenbaum PL, Avery LM et al (2002) Gross Motor Function Measure (GMFM-66 and GMFM-88) user’s manual Clinics in developmental medicine, Bd. 159. Mac Keith Press, LondonGoogle Scholar
  100. Scholtes VAB, Becher JG, Lankhorst GJ (2006) Clinical assessment of spasticity in children with cerebral palsy. Dev Med Child Neurol 48:64–73PubMedGoogle Scholar
  101. Shy MR, Lewis RA (2001) Inherited peripheral neuropathies. In: Pourmand R (Hrsg) Neuromuscular diseases. Butterworth-Heinemann, London, S 105–134Google Scholar
  102. Skinner SR (1992) Direct measurement of spasticity. In: Sussman MD (Hrsg) The diplegic child – evaluation and management. American Academy of Orthopaedic Surgeons, Rosemont, Illinois, S 31–44Google Scholar
  103. Smith RJ (1987) Tendon transfers for cerebral palsy. In: Smith RJ (Hrsg) Tendon transfers of the hand and forearm. Little Brown & Co, Boston, S 177–213Google Scholar
  104. Spitzy H, Lange F (1930) Orthopädie im Kindesalter. FCW Vogel, Leipzig, S 439–461Google Scholar
  105. Surveillance of Cerebral Palsy in Europe (SCPE) (2002) Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 44(9):633–640Google Scholar
  106. Tardieu G, Shentoub S, Delarue R (1954) A la recherche d’une technique de mesure de la spasticité. Rev Neurol 91:143–144PubMedGoogle Scholar
  107. Taylor NF, Dodd KJ, Graham HK (2004a) Test-retest reliability of hand-held dynamometric strength testing in young people with cerebral palsy. Arch Phys Med Rehabil 85(1):77–80PubMedGoogle Scholar
  108. Taylor NF, Dodd KJ, Larkin H (2004b) Adults with cerebral palsy benefit from participating in a strength training programme at a community gymnasium. Disabil Rehabil 26:1128–1134PubMedGoogle Scholar
  109. Terjesen T (2006) Development of the hip joints in unoperated children with cerebral palsy: a radiographic study of 76 patients. Acta Orthop 77(1):125–131PubMedGoogle Scholar
  110. Terjesen T (2012) The natural history of hip development in cerebral palsy. Dev Med Child Neurol 54(10):951–957PubMedGoogle Scholar
  111. Thomason P, Harvey A, Graham HK et al (2009) Measurement tools and methods. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy, 2. Aufl. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 581–604Google Scholar
  112. Tolra YL, Seringe R, Dubousset J (2001) Sémiologie neuro-orthopédique illustrée. Springer, ParisGoogle Scholar
  113. Vojta V (1984) Die zerebralen Bewegungsstörungen, 4. Aufl. Enke, StuttgartGoogle Scholar
  114. Vossough K, Darge K (2011) imaging: ultrasonography and magnetic resonance imaging. In: Panteliadis CP (Hrsg) Cerebral palsy: a multidisciplinary approach. Dustri, München, S 115–132Google Scholar
  115. Walsh EG (1992) Muscles, masses and motion: the physiology of normality, hypotonicity, spasticity and rigidity Clinics in developmental medicine, Bd. 125. Mac Keith Press, OxfordGoogle Scholar
  116. Widler KS, Glatthorn JF, Bizzini M et al (2009) Assessment of hip abductor muscle strength: a validity and reliability study. J Bone Joint Surg Am 91(11):2666–2672PubMedGoogle Scholar
  117. Wren TAL, Rethlefsen S, Kay RM (2005) Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age and previous surgery. J Pediatr Orthop 25:79–83PubMedGoogle Scholar
  118. Wu YN, Goldsmith A, Gaebler D et al (2010) Characterization of spasticity in cerebral palsy: dependence of catch angle on velocity. Dev Med Child Neurol 52:563–569PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Orthopädische KinderklinikBehandlungszentrum Aschau GmbH, Orthopädische KinderklinikAschau im ChiemgauDeutschland

Personalised recommendations