Skip to main content

Der gestörte Gang

  • Chapter
  • First Online:
Infantile Zerebralparese
  • 5124 Accesses

Zusammenfassung

Nahezu jeder gehfähige Patient mit infantiler Zerebralparese zeigt eine spezifische Gangstörung, die unterschiedlich stark ausgeprägt sein und sich im Verlauf auch ändern kann. Das auffällige Gangbild stellt die Summe von Defiziten der zentralen Steuerung, pathologischen Veränderungen am Haltungs- und Bewegungsapparat (Muskel- und Skelettsystem mit Schwäche, Spastik und Kontrakturen) und Kompensationsmechanismen dar. Da die Gangstörung mehrere Etagen und mehrere Ebenen betreffen kann, ist es notwendig, weitere Informationen über die verschiedenen Komponenten des jeweiligen pathologischen Ganges, aber auch über deren Ausmaß zu erhalten. Die Zuhilfenahme einer Gangklassifikation erleichtert die Einteilung und damit auch die Auswahl therapeutischer Möglichkeiten. Hierzu haben sich instrumentelle Hilfsmittel zur Beobachtung und insbesondere auch zur Quantifizierung von Gangstörungen etabliert. Mit der 3- dimensionalen Ganganalyse gelingt es nicht nur, die Bewegungen in allen 3 Ebenen zu erfassen, sondern auch die zugrunde liegenden Gelenkkräfte und -momente sowie die Muskelaktivitäten aufzuzeichnen. Zusammen mit den klinisch und radiologisch gewonnenen Untersuchungsdaten erhält man so ein umfassendes Bild, das die Einleitung therapeutischer Maßnahmen leichter und v. a. sicherer macht. Die Ganganalyse liefert allerdings nur Antworten auf Fragen, die man stellt, was die stetige Weiterbildung auf diesem wichtigen Gebiet zur Pflicht macht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arnold AS, Komattu AV, Delp SL (1997) Internal rotation gait. A compensatory mechanism to restore abduction capacity decreased by bony deformity. Dev Med Child Neurol 39(1):40–44

    CAS  PubMed  Google Scholar 

  • Arnold AS, Liu MQ, Schwartz MH et al (2006) The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture 23:273–281

    PubMed  Google Scholar 

  • Baker R, McGinley JL, Schwartz M et al (2012) The minimally clinically important difference for the gait profile score. Gait Posture 35(4):612–615

    PubMed  Google Scholar 

  • Barnes MP, Johnson GR (2001) Upper motor neuron syndrome and spasticity: clinical management and neurophysiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bernthal NM, Gamrath SC, Kay RM et al (2010) Static and dynamic gait parameters before and after multilevel soft tissue surgery in ambulating children with cerebral palsy. J Pediatr Orthop 30:174–179

    PubMed  Google Scholar 

  • Brunner R, Dreher T, Romkes J et al (2008) Effects of plantarflexion on pelvis and lower limb kinematics. Gait Posture 28:150–156

    CAS  PubMed  Google Scholar 

  • Carson MC, Harrington ME, Thompson NE et al (2001) Kinematic analysis of a multisegment foot model for research and clinical applications: a repeatabilty analysis. J Biomech 34:1299–1307

    CAS  PubMed  Google Scholar 

  • Chaleat-Valayer E, Bernard JC, Morel E et al (2006) Use of videographic examination for analysis of efficacy of botulinum toxin in the lower limbs in children with cerebral palsy. J Pediatr Orthop B 15(5):339–347

    PubMed  Google Scholar 

  • Chang CH, Albarracin JP, Lipton GE et al (2002) Long-term follow-up of surgery for equinovarus foot deformity in children with cerebral palsy. J Pediatr Orthop 22(6):792–799

    PubMed  Google Scholar 

  • Chang FM, Seidl AJ, Muthusamy K et al (2006) Effectiveness of instrumented gait analysis in children with cerebral palsy – comparison of outcomes. J Pediatr Orthop 26(5):612–616

    PubMed  Google Scholar 

  • Chang WN, Tsirikos AI, Miller F et al (2004) Impact of changing foot progression angle on foot pressure measurement in children with neuromuscular diseases. Gait Posture 20:14–19

    PubMed  Google Scholar 

  • Cook RE, Schneider I, Hazlewood ME et al (2003) Gait analysis alters decision-making in cerebral palsy. J Pediatr Orthop 23:292–295

    PubMed  Google Scholar 

  • Crenna P, Inverno M, Frogo C (1992) Pathophysiological profile of gait in children with cerebral palsy. In: Forssberg H, Hirschfeld H (Hrsg) Movement disorders in children. Medicine and sport sciences. Karger, Basel, S 186–198

    Google Scholar 

  • Damiano DL, Martellotta TL, Quinlivan JM et al (2001) Deficits in excentric versus concentric torque in children with spastic cerebral palsy. Med Sci Sports Exerc 33(1):117–122

    CAS  PubMed  Google Scholar 

  • Damron TA, Breed AL, Cook T (1993) Diminished knee flexion after hamstring surgery in cerebral palsy patients: prevalence and severity. J Pediatr Orthop 13(2):188–191

    CAS  PubMed  Google Scholar 

  • Davids JR, Bagley AM, Bryan M (1998) Kinematic and kinetic analysis of running in children with cerebral palsy. Dev Med Child Neurol 40(8):528–535

    CAS  PubMed  Google Scholar 

  • De Luca PA, Davis RB, Ounpuu S et al (1997) Alterations in surgical decision making in patients with cerebral palsy based on 3-D gait analysis. J Pediatr Orthop 17:608–614

    Google Scholar 

  • De Morais Filho MC, Kawamura CM, Kanaji PR et al (2010) The relation of triceps surae surgical lengthening and crouch gait in patients with cerebral palsy. J Pediatr Orthop B 19(3):226–230

    PubMed  Google Scholar 

  • Döderlein L (2007) Die infantile Zerebralparese. Steinkopff, Darmstadt

    Google Scholar 

  • Downing AL, Ganley KJ, Fay DR et al (2009) Temporal characteristics of lower extremity moment generation in children with cerebral palsy. Muscle Nerve 39(6):800–809

    PubMed Central  PubMed  Google Scholar 

  • Dreher T, Buccoliero T, Wolf SI et al (2012a) Long-term results after gastrocnemius-soleus intramuscular aponeurotic recession as a part of multilevel surgery in spastic diplegic cerebral palsy. J Bone Joint Surg Am 94(7):627–637

    PubMed  Google Scholar 

  • Dreher T, Götze M, Wolf SI et al (2012b) Distal rectus femoris transfer as part of multilevel surgery in children with spastic diplegia – a randomized clinical trial. Gait Posture 36(2):212–218

    PubMed  Google Scholar 

  • Dreher T, Wolf SI, Maier M et al (2012c) Long-term results after distal rectus femoris transfer as a part of multilevel surgery for the correction of stiff-knee gait in spastic diplegic cerebral palsy. J Bone Joint Surg Am 94(19):e142

    PubMed  Google Scholar 

  • Dreher T, Wolf SJ, Heitzmann D et al (2012d) Long-term outcome of femoral derotation osteotomy in children with spastic diplegia. Gait Posture 36(3):467–470

    PubMed  Google Scholar 

  • Ducroquet R, Ducroquet J, Ducroquet P (1968) Walking and limping: a study of normal and pathologic walking. Lippincott, Philadelphia

    Google Scholar 

  • Elder GC, Kirk J, Cook K et al (2003) Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 45(8):542–550

    PubMed  Google Scholar 

  • Evans EB (1975) The knee in cerebal palsy. In: Samilson RL (Hrsg) Orthopaedic aspects of cerebral palsy. Clinics in developmental medicine, Bd. 52/53. Butterworth-Heinemann, Philadelphia, S 173–194

    Google Scholar 

  • Gage JR (1991) Gait analysis in cerebral palsy Clinics in developmental medicine, Bd. 121. Mac Keith Press, London

    Google Scholar 

  • Gage JR (1992) Distal hamstring lengthening/release and rectus femoris transfer. In: Sussman MD (Hrsg) The diplegic child. American Academy of Orthopaedic Surgeons, Rosemont, S 317–339

    Google Scholar 

  • Gage JR (2004) Treatment principles for crouch gait. In: Gage JR (Hrsg) Treatment of gait problems in cerebral palsy. Mac Keith Press, London, S 382–397

    Google Scholar 

  • Gage JR (2009) General issues of recurrence with growth. In: Gage JR, Schwartz MH, Koop SE, Novacheck TF (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Pres, London, S 546–554

    Google Scholar 

  • Gannotti ME, Gordon GE, Nahornjak NT et al (2007) Postoperative gait velocity and mean knee flexion in stance of ambulatory children with spastic diplegia four years or more after multilevel surgery. J Pediatr Orthop 27:451–456

    PubMed  Google Scholar 

  • Götz-Neumann K (2003) Gehen verstehen – Ganganalyse in der Physiotherapie. Thieme, Stuttgart

    Google Scholar 

  • Gurney B (2002) Leg length discrepancy. Gait Posture 15:195–206

    PubMed  Google Scholar 

  • Harvey A, Graham HK, Morris ME et al (2007) The functional mobility scale: ability to detect change following SEMLS. Dev Med Child Neurol 49:603–607

    PubMed  Google Scholar 

  • Hoffer MM, Feiwell E, Perry J et al (1973) Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am 55(1):137–148

    CAS  PubMed  Google Scholar 

  • Hoffinger SA, Rab GT, Abou-Ghaida H (1993) Hamstrings in cerebral palsy crouch gait. J Pediatr Orthop 13(6):722–726

    CAS  PubMed  Google Scholar 

  • Jones K, Barker K (1996) Human movement explained. Butterworth-Heinemann, London

    Google Scholar 

  • Joseph B, Reddy K, Varghese RA et al (2010) Management of severe crouch gait in children and adolescents with cerebral palsy. J Pediar Orthop 30(8):832–839

    Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten MR (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392

    CAS  PubMed  Google Scholar 

  • Kaufman KR, Miller LS, Sutherland DH (1996) Gait asymmetry in patients with limb-length inequality. J Pediatr Orthop 16:144–150

    CAS  PubMed  Google Scholar 

  • Kay RM, Dennis S, Rethlefsen S et al (2000) The effect of preoperative gait analysis on orthopaedic decision making. Clin Orthop Relat Res 372:217–222

    PubMed  Google Scholar 

  • Keefer DJ, Tseh W, Caputo JL et al (2004) Comparison of direct and indirect measures of walking energy in children with hemiplegic cerebral palsy. Dev Med Child Neurol 46:320–324

    PubMed  Google Scholar 

  • Kim DJ, Park ES, Sim EG et al (2011) Reliability of visual classification of sagittal gait patterns in patients with bilateral spastic cerebral palsy. Ann Rehabil Med 35(3):354–360

    PubMed Central  PubMed  Google Scholar 

  • Kwak YH, Kim HW, Park KB (2013) Muscle-tendon lengths according to sagittal knee kinematics in patients with cerebral palsy: differences between recurvatum and crouch knee. J Pediatr Orthop 23(1):76–85

    Google Scholar 

  • Leonard CT, Hirschfeld H, Forssberg H (1991) The development of independent walking in children with cerebral palsy. Dev Med Child Neurol 33:567–577

    CAS  PubMed  Google Scholar 

  • Low J, Reed A (1996) Basic biomechanics explained. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Luyckx T, Didden K, Vandenneucker H et al (2009) Is there a biomechanical explanation for anterior knee pain in patients with patella alta?: influence of patellar height on patellofemoral contact force, contact area and contact pressure. J Bone Joint Surg Br 91(3):344–350

    CAS  PubMed  Google Scholar 

  • Mackey AH, Lobb GL, Walt SE et al (2003) Reliability and validity of the Observational Gait Scale in children with spastic diplegia. Dev Med Child Neurol 45(1):4–11

    PubMed  Google Scholar 

  • Malouin F (1995) Observational gait analysis. In: Craik RL, Oatis CA (Hrsg) Gait analysis. Mosby, St Louis, S 112–124

    Google Scholar 

  • Narayanan UG (2007) The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy. Curr Opin Pediatr 19:38–43

    PubMed  Google Scholar 

  • Noonan KJ, Halliday S, Browne R et al (2003) Interobserver variability of gait analysis in patients with cerebral palsy. J Pediatr Orthop 23:279–287

    PubMed  Google Scholar 

  • Normand X, Dubousset J (1985) Remise en tension de l’appareil extenseur du genou dans la démarche en triple flexion chez l‘enfant infirme moteur. Rev Chir Orthop 71:301–310

    CAS  PubMed  Google Scholar 

  • Novacheck TF, Stout JL, Tervo R (2000) Reliability and validity of the Gillette functional assessment questionnaire as an outcome measure in children with walking disabilities. J Pediatr Orthop 20:75–81

    CAS  PubMed  Google Scholar 

  • Ounpuu S, Thomason P, Harvey A et al et al (2009) Classification of cerebral palsy and patterns of gait pathology. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy, 2. Aufl. Mac Keith Press, London, S 147–166

    Google Scholar 

  • Park KB, Park HW, Lee KS et al (2008) Changes in dynamic foot pressure after surgical treatment of valgus deformity of the hindfoot in cerebral palsy. J Bone Joint Surg 90 A:1712–1721

    Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. Mc Graw Hill, New York

    Google Scholar 

  • Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function, 2. Aufl. Slack, Thorofare

    Google Scholar 

  • Piazza SJ, Delp SL (1996) The influence of muscles on knee flexion during the swing phase of gait. J Biomech 29:723–733

    CAS  PubMed  Google Scholar 

  • Read HS, Hazlewood ME, Hillman SJ et al (2003) Edinburgh visual gait score for use in cerebral palsy. J Pediatr Orthop 23(3):296–301

    PubMed  Google Scholar 

  • Reimers J (1990) Functional changes in the antagonists after lengthening the agonists in cerebral palsy. Clin Orthop Relat Res 253:35–37

    PubMed  Google Scholar 

  • Reimers J (1992) Clinically based decision making for surgery. In: Sussman MD (Hrsg) The diplegic child. American Academy of Orthopaedic Surgeons, Rosemont, S 151–161

    Google Scholar 

  • Rethlefsen SA, Yasmeh S, Wren TAL et al (2013) Repeat hamstring lengthening for crouch gait in children with cerebral palsy. J Pediatr Orthop 33:501–504

    PubMed  Google Scholar 

  • Riad J, Coleman S, Miller F (2007a) Arm posturing during walking in children with spastic hemiplegic cerebral palsy. J Pediatr Orthop 27:137–141

    PubMed  Google Scholar 

  • Riad J, Haglund-Akerlind Y, Miller F (2007b) Classification of spastic hemiplegic cerebral palsy in children. J Pediatr Orthop 27(7):758–764

    PubMed  Google Scholar 

  • Rodda J, Graham HK (2001) Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Neurol 8:98–108

    PubMed  Google Scholar 

  • Rodda J, Graham HK, Carson L et al (2004) Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br 86(2):251–258

    CAS  PubMed  Google Scholar 

  • Rodda JM, Graham HK, Nattrass GR et al (2006) Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am 88(12):2653–2664

    CAS  PubMed  Google Scholar 

  • Root L (1992) Distal hamstring surgery in cerebral palsy. In: Sussman MD (Hrsg) The diplegic child. American Academy of Orthopaedic Surgeons, Rosemont, S 309–315

    Google Scholar 

  • Rose J, Gamble JG, Medeiros J et al (1989) Energy cost of walking in normal children and in those with cerebral palsy: comparison of heart rate and oxygen uptake. J Pediatr Orthop 9:276–279

    CAS  PubMed  Google Scholar 

  • Rozumalski A, Schwartz MH (2009) Crouch gait patterns defined using k-means cluster analysis are related to underlying clinical pathology. Gait Posture 30:155–160

    PubMed  Google Scholar 

  • Schmid S, Schweizer K, Romkes J et al (2012) Secondary gait deviations in patients with and without neurological involvement: a systematic review. Gait & Posture 37(4):480–493

    Google Scholar 

  • Schmidt FA (1903) Unser Körper, 2. Aufl. R. Voigtländer, Leipzig

    Google Scholar 

  • Schutte LM, Narayanan UG, Stout JL et al (2000) An index for quantifying deviations from normal gait. Gait Posture 11:25–31

    CAS  PubMed  Google Scholar 

  • Senaran H, Holden C, Dabney KW et al (2007) Anterior knee pain in children with cerebral palsy. J Pediatr Orthop 27(1):12–16

    PubMed  Google Scholar 

  • Sienko TS, Moore C, Kelp-Lenane C et al (1996) Simulated gait patterns: the resulting effects on gait parameters, dynamic EMG, gait moments, and physiologic cost index. Gait & Posture 4:100–107

    Google Scholar 

  • Simon J, Doederlein L, McIntosh AS et al (2006) The Heidelberg foot measurement method: development, description and assessment. Gait Posture 23(4):411–424

    CAS  PubMed  Google Scholar 

  • Simon SR (2004) Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 37(12):1869–1880

    PubMed  Google Scholar 

  • Skaggs DL, Rethlefsen SA, Kay RM (2000) Variability in gait analysis interpretation. J Pediatr Orthop 20:759–764

    CAS  PubMed  Google Scholar 

  • Steele KM, DeMers MS, Schwartz MH et al (2012) Compressive tibiofemoral force during crouch gait. Gait Posture 35(4):556–560

    PubMed Central  PubMed  Google Scholar 

  • Stout JL, Gage JR, Schwartz MH et al (2008) Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am 90(11):2470–2484

    PubMed  Google Scholar 

  • Stout JL, Novacheck TF, Gage JR et al et al (2009) Treatment of crouch gait. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 555–578

    Google Scholar 

  • Sutherland DH, Cooper L (1978) The pathomechanics of progressive crouch gait in spastic diplegia. Orthop Clin North Am 9(1):143–154

    CAS  PubMed  Google Scholar 

  • Sutherland DH, Davids JR (1993) Common gait abnormalities of the knee in cerebral palsy. Clin Orthop Relat Res 288:139–147

    PubMed  Google Scholar 

  • Sutherland DH, Olshen RA, Biden EN et al (1988) The development of mature walking Clinics in developmental medicine, Bd. 104/105. Mac Keith Press, Oxford

    Google Scholar 

  • Thom H (1982) Die infantilen Zerebralparesen, 2. Aufl. Thieme, Stuttgart, S 209–317

    Google Scholar 

  • Thomason P, Rodda J, Sangeaux M et al (2012) Management of children with ambulatory cerebral palsy: an evidence-based review. Commentary by Hugh Williamson Gait Laboratory staff. J Pediatr Orthop 32(2):S182–S186

    PubMed  Google Scholar 

  • Thompson NS, Baker RJ, Cosgrove AP et al (2001) Relevance of the popliteal angle to the hamstring length in cerebral palsy crouch gait. J Pediatr Orthop 21:383–387

    CAS  PubMed  Google Scholar 

  • Topoleski TA, Kurtz CA, Grogan DP (2000) Radiographic abnormalities and clinical symptoms associated with patella alta in ambulatory children with cerebral palsy. J Pediatr Orthop 20(5):636–639

    CAS  PubMed  Google Scholar 

  • Trost JP et al (2009) Clinical assessment. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy, 2. Aufl. Mac Keith Press, London, S 181–204

    Google Scholar 

  • Van der Krogt MM, Doorenbosch CA, Harlaar J (2007) Muscle length and lengthening velocity in voluntary crouch gait. Gait Posture 26(4):532–538 (doi:10.1016/j. gaitpost.2006.11.208)

    PubMed  Google Scholar 

  • Van der Krogt MM, Doorenbosch CA, Haarlar J (2009) The effect of walking speed on hamstring length and lengthening velocity in children with spastic cerebral palsy. Gait Posture 29(4):640–644

    PubMed  Google Scholar 

  • Van der Linden MI, Hazlewood ME, Hillman SJ et al (2006) Passive and dynamic rotation of the lower limbs in children with diplegic cerebral palsy. Dev Med Child Neurol 48(3):176–180

    PubMed  Google Scholar 

  • Vuillermin C, Rodda J, Rutz E et al (2011) Severe crouch gait in spastic diplegia can be prevented: a population-based study. J Bone Joint Surg Br 93(12):1670–1675

    CAS  PubMed  Google Scholar 

  • Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231

    CAS  PubMed  Google Scholar 

  • Wiley ME, Damiano DL (1998) Lower extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107

    CAS  PubMed  Google Scholar 

  • Winters TF, Gage JR, Hicks R (1987) Gait patterns in spastic hemiplegia in children and young adults. J Bone Joint Surg 69 A:437–441

    Google Scholar 

  • Wolf SJ, Simon J, Patikas D et al (2008) Foot motion in children shoes: a comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture 27:31–39

    Google Scholar 

  • Woollacott MH, Crenna P (2008) Postural control. In: standing, walking in children with cerebral palsy. In Hadders-Algra M, Brogen Carlberg E (Hrsg) Postural control: a key issue in developmental disorders. Clinics in developmental medicine, Bd. 179. Wiley-Blackwell, Hoboken, S 97–130

    Google Scholar 

  • Wren TAL, Rethlefsen S, Kay RM (2005) Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age and previous surgery. J Pediatr Orthop 25:79–83

    PubMed  Google Scholar 

  • Zwick EB, Svehlík M, Steinwender G et al (2010) Genu recurvatum in cerebral palsy – part B: hamstrings are abnormally long in children with cerebral palsy showing knee recurvatum. J Pediatr Orthop B 19(4):373–378

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Döderlein .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Döderlein, L. (2015). Der gestörte Gang. In: Infantile Zerebralparese. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35319-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35319-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35318-5

  • Online ISBN: 978-3-642-35319-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics