Skip to main content

Infantile Zerebralparese

  • Chapter
  • First Online:
Infantile Zerebralparese

Zusammenfassung

Der Sammelbegriff der infantilen Zerebralparese beschreibt eine Störung von Haltung und Bewegung sowie von psychischen und vegetativen Funktionen, die infolge einer dauerhaften Schädigung des unreifen Gehirnes entsteht. Das Ausmaß der zentralen Schädigung, aber auch Wachstums- und Entwicklungseinflüsse bestimmen das jeweilige Schädigungsbild, das sich trotz des dauerhaften bzw. nicht fortschreitenden Schadens am zentralen Nervensystem ständig ändern kann. Daraus ergibt sich die große Bedeutung einer sorgfältigen und umfassenden Diagnostik und regelmäßiger Kontrolluntersuchungen. Wegen der vielen Teilbereiche, die durch den zentralen Schaden in Mitleidenschaft gezogen sein können, ist ein multiprofessioneller Ansatz der Versorgung ratsam. Die Veränderungen am Haltungs- und Bewegungsapparat nehmen besonders in der Zeit des Wachstums eine zentrale Rolle im Gesamtbild der Behinderung ein. Da eine Heilung wegen des unveränderlichen Hirnschadens nicht möglich ist, besteht die hohe intellektuelle Herausforderung an die Behandler darin, das individuell günstigste Ziel zu definieren und die Wege dorthin festzulegen. Diese Ziele können mit dem weiteren Wachstum des Patienten wechseln und sind dann entsprechend anzupassen. Der Patient sollte keinesfalls aus fehlverstandenem „Mitgefühl“ ohne jede Maßnahme seinem weiteren Schicksal ausgeliefert werden, da der natürliche Verlauf der Störung besonders bei allen stärker Betroffenen unweigerlich zum Funktionsverlust führt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Akin R, Okutan V, Sarici U et al (1998) Evaluation of bone mineral density in children receiving antiepileptic drugs. Pediatr Neurol 19(2):129–131

    CAS  PubMed  Google Scholar 

  • Albright AL et al (2009) The neurosurgical treatment of dystonia. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy, 2. Aufl. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 429–438

    Google Scholar 

  • Alhusaini AA, Crosbie J, Sheperd RB et al (2010) Mechanical properties of the plantarflexor musculotendinous unit during passive dorsiflexion in children with cerebral palsy compared with typically developing children. Dev Med Child Neurol 52(6):e101–e106

    PubMed  Google Scholar 

  • Bachrach SJ, Kecskemethy HH, Harcke HT et al (2010) Decreased fracture incidence after 1 year of pamidronate treatment in children with spastic quadriplegic cerebral palsy. Dev Med Child Neurol 52(9):837–842

    PubMed  Google Scholar 

  • Barber L, Barrett R, Lichtwark G (2011a) Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic CP. J Biomech 44:2496–2500

    PubMed  Google Scholar 

  • Barber L, Hastings-Ison T, Baker R et al (2011b) Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol 53(6):543–548

    PubMed  Google Scholar 

  • Barnes MP (2008) An overview of the clinical management of spasticity. In: Barnes MP, Johnson GR (Hrsg) Upper motor neurone syndrome and spasticity, 2. Aufl. Cambridge University Press, Cambridge, S 1–8

    Google Scholar 

  • Barrett RS, Lichtwark GA (2010) Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol 52:794–804

    PubMed  Google Scholar 

  • Barry MJ, van Swearingen JM, Albright AL (1999) Reliability and responsiveness of the Barry-Albright dystonia scale. Dev Med Child Neurol 41:404–411

    CAS  PubMed  Google Scholar 

  • Bathien N, Rondfot P (1985) Assessment of motor function in extrapyramidal disorders. In: Eccles J, Dimitrijevic MR (Hrsg) Upper motor neuron function and dysfunctions. Karger, Basel, S 210–221

    Google Scholar 

  • Bax M (1964) Terminology and classification of cerebral palsy. Dev Med Child Neurol 6:295–307

    CAS  PubMed  Google Scholar 

  • Bax M, Goldstein M, Rosenbaum P et al (2005) Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 47:571–576

    PubMed  Google Scholar 

  • Bessou P (1989) Spasticité. In: LeBarbier P, Cahuzac JP (Hrsg) Infirmité motrice d’origine cérébrale. Expansion scientifique française. SOFCOT, Paris, S 3–8

    Google Scholar 

  • Biesalski K (1914) Die spastischen Lähmungen der Kinder. In: Lange F (Hrsg) Lehrbuch der Orthopädie. G. Fischer, Jena, S 332–374

    Google Scholar 

  • Bischof F, Basu D, Pettifor JM (2002) Pathological long-bone fractures in residents with cerebral palsy in a long-term care facility in South Africa. Dev Med Child Neurol 44:119–122

    CAS  PubMed  Google Scholar 

  • Bishop N (2005) Skeletal maturation in cerebral palsy. Dev Med Child Neurol 47:220

    PubMed  Google Scholar 

  • Blair E (2011) Epidemiology of cerebral palsy. In: Panteliadis CP (Hrsg) Cerebral palsy. Dustri International Orlando, München, S 27–37

    Google Scholar 

  • Blair E, Watson L, Badawi N et al (2001) Life expectancy among people with cerebral palsy in Western Australia. Dev Med Child Neurol 43(8):508–515

    CAS  PubMed  Google Scholar 

  • Bleck EE (1987) Orthopaedic management in cerebral palsy Clinics in developmental medicine, Bd. 99/100. Mac Keith Press, London

    Google Scholar 

  • Bobath B (1986) Abnorme Haltungsreflexe bei Gehirnschäden, 4. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Bode H (2001) Sozioökonomische Aspekte. In: Heinen F, Bartens W (Hrsg) Das Kind mit der Spastik. Hans Huber, Bern, S 49–59

    Google Scholar 

  • Boldingh EJ, Jacobs van der Bruggen MA, Bos CF et al (2005) Determinants of hip pain in adult patients with severe cerebral palsy. J Pediatr Orthop 14(2):120–125

    Google Scholar 

  • Booth CM, Cortina-Borja MJF, Theologis TH (2001) Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol 43:314–320

    CAS  PubMed  Google Scholar 

  • Braun KVN, Maenner MJ, Christensen D et al (2013) The role of migration and choice of denominator on the prevalence of cerebral palsy. Dev Med Child Neurol 55:520–526

    Google Scholar 

  • Brin MF (2003) Fundamentals of dystonia. In: Moore OP, Naumann M (Hrsg) Handbook of Botulinumtoxin treatment. Blackwell Science, London, S 101–118

    Google Scholar 

  • Brissaud E (1880) Recherches anatomo-pathologiques et physiologiques sur la contracture permanente des hemiplegiques. V.-A. Delahaye, Paris

    Google Scholar 

  • Brown JK, Minns RA (1989) Mechanisms of deformity in children with cerebral palsy. Sem Orthop 14:236–255

    Google Scholar 

  • Brunner R, Döderlein L (1996) Pathologic fractures in patients with cerebral palsy. J Pediatr Orthop 5:232–238

    CAS  Google Scholar 

  • Burke D (1988) Spasticity as an adaptation to pyramidal tract injury. In: Waxman SG (Hrsg) Functional recovery in neurological disease: advances in neurology, Bd. 47. Raven Press, New York, S 401–423

    Google Scholar 

  • Burke RE, Fahn S, Marsden CD et al (1985) Validity and reliability of a rating scale for the primary torsion dystonia. Neurology 35:73–77

    CAS  PubMed  Google Scholar 

  • Cans C, Sellier E, Mermet MA (2011) Epidemiology of cerebral palsy. In: Panteliadis CP (Hrsg) Cerebral palsy: a multidisciplinary approach. Dustri, München, S 17–26

    Google Scholar 

  • Carriero A, Zavatsky A, Stebbins J et al (2009) Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy. J Pediatr Orthop 29(1):73–79

    PubMed  Google Scholar 

  • Castle ME, Rayman TA, Schneider M (1979) Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res 142:223–232

    PubMed  Google Scholar 

  • Caulton JM, Ward KA, Aslop CW (2004) A randomised controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy. Arch Dis Child 89:131–135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ceballos-Baumann AO (2005) Dystonien. In: Ceballos-Baumann AO (Hrsg) Bewegunsstörungen, 2. Aufl. Thieme, Stuttgart, S 128–180

    Google Scholar 

  • Chad KE, Bailey DA, Mc Kay HA et al (1999) The effect of a weight-bearing physical activity program on bone mineral content in children with cerebral palsy. J Pediatr 135:115–117

    CAS  PubMed  Google Scholar 

  • Charles JR (2008) Typical and atypical development of the upper limb in children. In: Eliasson AC, Burtner PA (Hrsg) Improving hand function in children with cerebral palsy: theory, evidence and intervention. Clinics in developmental medicine, Bd. 178. Mac Keith Press, London, S 147–159

    Google Scholar 

  • Chen CL, Ke JY, Wang CJ et al (2010) Factors associated with bone density in different skeletal regions in children with cerebral palsy of various motor severities. Dev Med Child Neurol 53(2):131–136

    CAS  PubMed  Google Scholar 

  • Comella CL, Leurgans S, Wuu J et al (2003) Dystonia study group: rating scales for dystonia: a multicenter assessment. Mov Disord 18(3):303–312

    PubMed  Google Scholar 

  • Damiano DL, Abel MF (1999) Interrelationship of strength and gait before and after hamstring lengthening. J Pediatr Orthop 19:352–358

    CAS  PubMed  Google Scholar 

  • Damiano DL, Dodd DK, Taylor NF (2002) Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol 44(1):68–72

    PubMed  Google Scholar 

  • Dammann O, Levinton A (1997) Maternal intrauterine infection, cytokines and brain damage in the preterm newborn. Ped Res 42:1–8

    CAS  Google Scholar 

  • Davids JR, Foti T, Dabelstein J et al (1999) Objective assessment of dyskinesia in children with cerebral palsy. J Pediatr Orthop 19(2):211–214

    CAS  PubMed  Google Scholar 

  • Davids JR, Gibson TW, Pugh LI et al (2013) Proximal femoral geometry before and after varus rotational osteotomy in children with cerebral palsy and neuromuscular hip dysplasia. J Pediatr Orthop 33(2):182–189

    PubMed  Google Scholar 

  • Demir SÖ, Oktay F, Uysal H et al (2006) Upper extremity shortness in children with hemiplegic cerebral palsy. J Pediatr Orthop 26(6):764–768

    PubMed  Google Scholar 

  • Detrembleur C, Willems P, Plaghki L (1997) Does walking speed influence the time pattern of muscle activation in normal children? Dev Med Child Neurol 39:803–807

    CAS  PubMed  Google Scholar 

  • Dietz V, Berger W (1995) Cerebral palsy and muscle transformation. Dev Med Child Neurol 37:180–184

    CAS  PubMed  Google Scholar 

  • Dietz V, Sinkjaer T (2007) Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol 6:725–733

    PubMed  Google Scholar 

  • Dimeglio A (1993) Economical problems arising from cerebral palsy The international conference and updating course on the orthopaedic treatment of cerebral palsy, Milano, 28.–30.5.1993., S 12–13

    Google Scholar 

  • Dodd KJ, Taylor NF, Graham HK (2003) A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol 45:652–657

    PubMed  Google Scholar 

  • Döderlein L, Wenz W, Schneider U (2004) Fußdeformitäten: Der Spitzfuß/der Hackenfuß. Springer, Heidelberg

    Google Scholar 

  • Edwards ST (1996) Neurological physiotherapy. Churchill Livingstone, New York

    Google Scholar 

  • Eek MN, Beckung E (2008) Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture 28(3):366–371

    PubMed  Google Scholar 

  • Elder GC, Kirk J, Cook K et al (2003) Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 45(8):542–550

    PubMed  Google Scholar 

  • Eliasson AC, Krumlinde-Sundholm L, Rösblad B et al (2006) The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol 48(7):549–554

    PubMed  Google Scholar 

  • Erickson T, Loder RT (2003) Bone age in children with hemiplegic cerebral palsy. J Pediatr Orthop 23:669–671

    PubMed  Google Scholar 

  • Fahn S, Marsden CD, Calne DB (1987) Classification and investigation of dystonia. In: Marsden CD, Fahn S (Hrsg) Movement disorders, 2. Aufl. Butterworth, London, S 332–358

    Google Scholar 

  • Fairhurst C (2010) Cerebral palsy in 20 Minutes (Vortrag anlässlich der Jahrestagung der BSSCP 2011, Edinburgh)

    Google Scholar 

  • Fehlings D, Switzer L, Agarwal P et al (2012) Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol 54(2):106–116

    PubMed  Google Scholar 

  • Feldkamp M, Matthiaß HH (1988) Diagnose der infantilen Zerebralparese im Säuglings- und Kindesalter, 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Fenichel GM (2009) Clinical pediatric neurology: a signs and symptoms approach, 6. Aufl. Saunders Elsevier, Philadelphia, S 301–302

    Google Scholar 

  • Foerster O (1906) Die Kontrakturen bei den Erkrankungen der Pyramidenbahn. S. Karger, Berlin

    Google Scholar 

  • Foran JR, Steinman S, Barash I et al (2005) Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol 47:713–717

    PubMed  Google Scholar 

  • Fowler EG, Staudt LA, Greenberg MB (2010) Lower-extremity selective voluntary motor control in patients with spastic cerebral palsy: increased distal motor impairment. Dev Med Child Neurol 52(3):264–269

    PubMed  Google Scholar 

  • Fridén J, Lieber RL (2002) Tendon transfer surgery: clinical implications of experimental studies. Clin Orthop Relat Res (Suppl) 403:S163–S170

    Google Scholar 

  • Fridén J, Lieber RL (2003) Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve 27:157–164

    PubMed  Google Scholar 

  • Fry N, Childs LC (2003) Accurate measurement of muscle belly length in the motion analysis laboratory. Gait Posture 17:119–124

    CAS  PubMed  Google Scholar 

  • Fuji T, Yonenobu K (1987) Cervical radiculopathy or myelopathy secondary to athetoid cerebral palsy. J Bone Joint Surg Am 69(6):815–821

    CAS  PubMed  Google Scholar 

  • Fulford GE, Brown JK (1976) Position as a cause of deformity in children with cerebral palsy. Dev Med Child Neurol 18(3):305–314

    CAS  PubMed  Google Scholar 

  • Gage JR (2004) Treatment principles for crouch gait. In: Gage JR (Hrsg) Treatment of gait problems in cerebral palsy. Mac Keith Press, London, S 382–397

    Google Scholar 

  • Gage JR (2009) General issues of recurrence with growth. In: Gage JR, Schwartz MH, Koop SE, Novacheck TF (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 546–554

    Google Scholar 

  • Gage JR, Novacheck TF (2001) An update on the treatment of gait problems in cerebral palsy. J Pediatr Orthop B 10(4):265–274

    CAS  PubMed  Google Scholar 

  • Gage JR, Schwartz MH (2009) Consequences of brain injury on musculoskeletal development. In: Gage JR, Schwartz MH, Koop SE, Novacheck TF (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 107–129

    Google Scholar 

  • Gantelius S, Hedström Y, Ponten E (2012) Higher expression of myosin heavy chain IIx in wrist flexors in cerebral palsy. Clin Orthop Relat Res 470(5):1272–1277

    PubMed Central  PubMed  Google Scholar 

  • Gaugele K, Gümbel TH (1913) Die Littlesche Krankheit und ihre Behandlung mit besonderer Berücksichtigung der Försterschen Operation. G. Fischer,, Jena

    Google Scholar 

  • Gilbert SR, Gilbert AC (2004) Skeletal maturation in children with quadriplegic cerebral palsy. J Pediatr Orthop 24:292–297

    PubMed  Google Scholar 

  • Giuliani CA (1991) Dorsal rhizotomy for children with cerebral palsy: support for concepts in motor control. Phys Ther 71:248–259

    CAS  PubMed  Google Scholar 

  • Goff B (1986) The Rood-approach. In: Downie PA (Hrsg) Cash’s textbook of neurology for physiotherapists. Faber & Faber, London, S 220–239

    Google Scholar 

  • Goldberg MJ (1991) Measuring outcomes in cerebral palsy. J Pediatr Orthop 11:682–685

    CAS  PubMed  Google Scholar 

  • Gorter JW et al (2007) To stretch or not to stretch in children with cerebral palsy. Dev Med Child Neurol 49(10):797–800

    PubMed  Google Scholar 

  • Gose S, Sakai T, Shibata T et al (2010) Morphometric analysis of the femur in cerebral palsy: 3-dimensional CT study. J Pediatr Orthop 30(6):568–574

    PubMed  Google Scholar 

  • Gose S, Sakai T, Shibata T et al (2011) Verification of the Robin and Graham classification system of hip disease in cerebral palsy using three-dimensional computed tomography. Dev Med Child Neurol 53(12):1107–1112

    PubMed  Google Scholar 

  • Gough M, Shortland AP (2012) Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Dev Med Child Neurol 54:495–499

    PubMed  Google Scholar 

  • Gracies JM (2005a) Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve 31(5):535–551

    PubMed  Google Scholar 

  • Gracies JM (2005b) Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31(5):552–571

    PubMed  Google Scholar 

  • Graham HK, Selber P (2003) Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg 85B:157–166

    Google Scholar 

  • Graham HK, Harvey A, Rodda J et al (2004) The functional mobility scale (FMS). J Pediatr Orthop 24:514–520

    PubMed  Google Scholar 

  • Hadders-Algra M (2001) Early brain damage and the development of motor behaviour in children: clues for therapeutic intervention? Neural Plasticity 8:31–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagberg B, Hagberg G (1989) The changing panorama of infantile hydrocephalus and cerebral palsy over 40 years: a Swedish survey. Brain Dev 11:368–373

    CAS  PubMed  Google Scholar 

  • Hagberg B, Hagberg G (1993) The origins of cerebral palsy. In: David TJ (Hrsg) Recent advances in pediatrics. Churchill Livingstone, Edinburgh, S 67–83

    Google Scholar 

  • Hagberg B, Hagberg G, Olow J et al (1996) The changing panorama of cerebral palsy in Sweden. VII: Prevalence and origin in the birth year period 1987–1990. Acta Pediatr 85:954–960

    CAS  Google Scholar 

  • Hagel C (2011) Neuropathology of cerebral palsy. In: Panteliadis CP (Hrsg) Cerebral palsy. Dustri International, München, S 39–54

    Google Scholar 

  • Hanna SE, Rosenbaum PL, Bartlett DJ et al (2009) Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 51(4):295–302

    PubMed  Google Scholar 

  • Harada T, Ebara S (1996) The cervical spine in athetoid cerebral palsy: a radiographical study of 180 patients. J Bone Joint Surg 78B:613–619

    Google Scholar 

  • Harum KH, Hoon AH (1999) Factor V Leiden: a risk factor for cerebral palsy. Dev Med Child Neurol 41:781–785

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Kanda T, Hashimoto K et al (1996) MR imaging of spastic diplegia: the importance of corpus callosum. Acta Radiol 37:830–836

    CAS  PubMed  Google Scholar 

  • Heinen F, Fietzek KM (2001) Kortikale Kontrolle der Motorik. In: Heinen F, Bartens W (Hrsg) Das Kind mit der Spastik. Hans Huber, Bern, S 61–70

    Google Scholar 

  • Henderson R, Gilbert SR, Clement ME (2005) Altered skeletal maturation in moderate to severe cerebral palsy. Dev Med Child Neurol 47:229–236

    PubMed  Google Scholar 

  • Hirose G, Kadoya S (1984) Cervical spondylotic radiculo-myelopathy in patients with athetoid-dystonic cerebral palsy. J Neurol Neurosurg Psychiatr 47:775–780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holly RG, Barnett JG, Ashmore CR, Taylor RG, Molé PA (1980) Stretch-induced growth in chicken wing muscles: a new model of stretch hypertrophy. Am J Physiol 238(1):c62–c65

    CAS  PubMed  Google Scholar 

  • Hoon AH (2005) Neuroimaging in cerebral palsy: patterns of brain dysgenesis and injury. J Child Neurol 20(12):936–939

    PubMed  Google Scholar 

  • Hoon AH, Johnston MV et al (2002) Cerebral palsy. In: Asbury AK, McKhann GM, McDonald WI (Hrsg) Diseases of the nervous system, 3. Aufl. Cambridge University Press, New York, S 568–580

    Google Scholar 

  • Hoon AH, Reinhardt EM, Kelley RI et al (1997) Brain MR imaging in suspected extrapyramidal cerebral palsy: observations in distinguishing genetic metabolic from acquired etiologies. J Pediatr 131:240–245

    PubMed  Google Scholar 

  • Hurvitz EA, Green LB, Hornyak JE et al (2008) Body mass index measures in children with cerebral palsy related to gross motor function classification: a clinic-based-study. Am J Phys Med Rehabil 87(5):396–403

    Google Scholar 

  • Hutton JL, Pharoah PO (2006) Life expectancy in severe cerebral palsy. Arch Dis Child 91(3):254–258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hylton N (1990) Dynamic casting and orthotics. In: Glenn MB, Whyte J (Hrsg) The practical management of spasticity in children and adults. Lea & Febiger, Philadelphia, S 167–200

    Google Scholar 

  • Inder T, Huppi PS, Zientara GP et al (1999) Early detection of periventricular leukomalacia by diffusion weighted magnetic resonance imaging techniques. J Pediatr 134:631–634

    CAS  PubMed  Google Scholar 

  • Jansen M (1916) Über die Länge der Muskelbündel und ihre Bedeutung für die Entstehung der spastischen Kontrakturen. F. Enke, Stuttgart

    Google Scholar 

  • Katz RT, Rymer WZ (1989) Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehab 70:144–155

    CAS  Google Scholar 

  • Ko PS, Jameson PG, Chang TL et al (2011) Transverse plane-pelvic asymmetry in patients with cerebral palsy and scoliosis. J Pediatr Orthop 31(3):277–283

    PubMed  Google Scholar 

  • Korinthenberg R (2001) Physiotherapie – Darstellung der Evidence. In: Heinen F, Bartens W (Hrsg) Das Kind und die Spastik. Huber, Bern, S 115–135

    Google Scholar 

  • Kozeis N, Pavlou E (2011) Visual impairment in children with cerebral palsy. In: Panteliadis C (Hrsg) Cerebral palsy. Dustri International, München, S 265–268

    Google Scholar 

  • Krägeloh-Mann J (2000) Magnetic resonance imaging in cerebral palsy. In: Neville B, Albright AL (Hrsg) The management of spasticity associated with the cerebral palsy in children and adolescents. Churchill Communications, New Jersey, S 51–61

    Google Scholar 

  • Krägeloh-Mann I (2001) Klassifikation, Epidemiologie, Pathogenese und Klinik. In: Heinen F, Bartens W (Hrsg) Das Kind und die Spastik. Erkenntnisse der evidence based medicine zur Cerebralparese. Hans Huber, Bern, S 37–48

    Google Scholar 

  • Krägeloh-Mann I, Toft Luding PJ et al (1999) Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 88:897–908

    PubMed  Google Scholar 

  • Kramer JF, Mc Phail HE (1994) Relationships among measures of walking efficiency, gross motor ability and isokinetic strength in adolescents with cerebral palsy. Ped Phys Ther 6:3–8

    Google Scholar 

  • Kuban T, Levinton MH (1994) Cerebral palsy. N Engl J Med 330:188–195

    CAS  PubMed  Google Scholar 

  • Küttner H, Landois F (1913) Die Chirurgie der quergestreiften Muskulatur. F. Enke, Stuttgart, S 174–176

    Google Scholar 

  • Lampe R, Grassl S, Mitternacht J et al (2006) MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain Dev 28(8):500–506

    PubMed  Google Scholar 

  • Lance JW (1980) Pathophysiology of spasticity and clinical experience with baclofen. In: Feldman RG, Young RR, Koella WP (Hrsg) Spasticity: disordered motor control. Year Book Medical Publishers, Chicago, S 185–203

    Google Scholar 

  • Lanz T, Wachsmuth W (1938) Teil 4: Bein und Statik Praktische Anatomie, Bd. 1. Springer, Berlin

    Google Scholar 

  • LeBarbier P (1989) Croissance du muscle. In: LeBarbier P, Cahuzac JP (Hrsg) Infirmité motrice d’origine cérébrale. Expansion scientifique français, Paris, S 9–18

    Google Scholar 

  • Leet AI, Mesfin A, Pichard C et al (2006) Fractures in children with cerebral palsy. J Pediatr Orthop 26:624–627

    PubMed  Google Scholar 

  • Leonard CT, Hirschfeld H, Forssberg H (1991) The development of independent walking in children with cerebral palsy. Dev Med Child Neurol 33(7):567–577

    CAS  PubMed  Google Scholar 

  • Lieber RL (2002b) The production of movement. In: Lieber RL (Hrsg) Skeletal muscle structure, function and plasticity, 2. Aufl. Lippincott Williams & Wilkins, Philadelphia, S 113–172

    Google Scholar 

  • Lieber RL (2002c) Adaptation to increased use. In: Lieber RL: Skeletal muscle structure, function and plasticity, 2. Aufl. Lippincott Williams & Wilkins, Philadelphia, S 173–223

    Google Scholar 

  • Lieber RL (2002d) Adaptation to decreased use. In: Lieber RL (Hrsg) Skeletal muscle structure, function and plasticity, 2. Aufl. Lippincott Williams & Wilkins, Philadelphia, S 225–286

    Google Scholar 

  • Lieber RL (2010a) Skeletal muscle adaptation to spasticity. In: Lieber RL (Hrsg) Skeletal muscle structure, function, and plasticity, 3. Aufl. Wolters-Kluwer, Philadelphia, S 271–292

    Google Scholar 

  • Lieber RL (2010b) Skeletal muscle structure, function, and plasticity, 3. Aufl. Wolters-Kluwer, Philadelphia

    Google Scholar 

  • Lin JP, Brown JK (1992) Peripheral and central mechanisms of hindfoot equinus in childhood hemiplegia. Dev Med Child Neurol 34:949–965

    CAS  PubMed  Google Scholar 

  • Little WJ (1976) On the influence of abnormal parturition, difficult labours, premature birth and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. In: Bick EM (Hrsg) Classics of orthopaedics. Lippincott, Philadelphia, S 124–139 (Erstveröff. 1862)

    Google Scholar 

  • Lohse-Busch H (2001) Extrakorporale Stoßwellen. In: Lohse-Busch H, Riedel M, Graf-Baumann T (Hrsg) Das therapeutische Angebot für bewegungsgestörte Kinder. Springer, Heidelberg, S 257–275

    Google Scholar 

  • Lombard M (1986) Rétraction musculaire. Etude expérimentale. Conséquences pratiques. Motricité Cérébrale 7(4):125–131

    Google Scholar 

  • Lumsden DE, Kaminka M, Cimeno H et al (2013) Proportion of life lived with dystonia inversely correlates with response to pallidal deep brain stimulation in both primary and secondary childhood dystonia. Dev Med Child Neurol 55:567–574

    PubMed  Google Scholar 

  • Majnemer A (2012) Measures for children with developmental disabilities: an ICF-CY approach Clinics in developmental medicine, Bd. 194/195. Mac Keith Press, London

    Google Scholar 

  • Massaro M, Pastore S, Ventura A et al (2013) Pain in cognitively impaired children: a focus for general pediatricians. Eur J Pediatr 172(1):9–14

    CAS  PubMed  Google Scholar 

  • Mazur JM, Danko AM, Standard SC et al (2004) Remodeling of the proximal femur after varus osteotomy in children with cerebral palsy. Dev Med Child Neurol 46:412–415

    PubMed  Google Scholar 

  • McIntyre S, Taitz D, Keogh J et al (2012) A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 55(6):499–508

    PubMed  Google Scholar 

  • Mergler S, Evenhuis HM, Boot AM et al (2009) Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol 51(10):773–778

    PubMed  Google Scholar 

  • Meythaler JM, GuinRenfroe S (2001) Continuously infused intrathecal Baclofen over 12 months for spastic hypertonia in adolescents and adults with cerebral palsy. Arch Phys Med Rehabil 82:155–161

    CAS  PubMed  Google Scholar 

  • Minns RA (2010) Neuromotor development and examination. In: Benson M, Fixsen J, Macnicol M, Parsch K (Hrsg) Children’s orthopaedics and fractures, 3. Aufl. Springer, London, S 231–248

    Google Scholar 

  • Mockford M, Caulton JM (2008) Systemic review of progressive strength training in children and adolescents with cerebral palsy who are ambulatory. Ped Phys Ther 20:318–333

    Google Scholar 

  • Mohagheghi AA, Khan T, Meadows TH et al (2008) In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol 50:44–50

    CAS  PubMed  Google Scholar 

  • Monbaliu E, Ortibus E, Roelens F et al (2010) Rating scales for dystonia in cerebral palsy: reliability and validity. Dev Med Child Neurol 52(6):570–575

    CAS  PubMed  Google Scholar 

  • Monbaliu E, Ortibus E, De Cat J et al (2012) The Dyskenesia Impairment Scale: a new instrument to measure dystonia and choreoathetosis in dyskinetic cerebral palsy. Dev Med Child Neurol 54(3):278–283

    PubMed  Google Scholar 

  • Morris C, Bartlett D (2004) Gross motor function classification system: impact and utility. Dev Med Child Neurol 46:60–65

    PubMed  Google Scholar 

  • Murphy CC, Yeargin Allsopp M, Decoufle P et al (1993) Prevalence of cerebral palsy among 10 year old children in metropolitan Atlanta 1985–1987. J Pediatr 123:S13–S19

    CAS  PubMed  Google Scholar 

  • Mutch I, Alberman E, Hagberg B et al (1992) Cerebral palsy epidemiology: where are we and where are we going? Dev Med Child Neurol 34:547–551

    CAS  PubMed  Google Scholar 

  • Nelson KB (1991) Prenatal origin of hemiparetic cerebral palsy: how often and why? Pediatrics 88:1059–1061

    CAS  PubMed  Google Scholar 

  • Nelson KB, Ellenberg JH (1986) Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med 315:81–86

    CAS  PubMed  Google Scholar 

  • Oberhofer K, Stott NS, Mithraratne K et al (2010) Subject-specific modeling of lower limb muscles in children with cerebral palsy. Clin Biomech 25(1):88–94

    CAS  Google Scholar 

  • Okano K, Yamaguchi K, Ninomiya Y et al (2013) Femoral head deformity and severity of acetabular dysplasia of the hip. Bone Joint J 95B:1192–1196

    Google Scholar 

  • Okumura A, Kato T, Kuno K et al (1997) MRI findings in patients with spastic cerebral palsy II: correlation with type of cerebral palsy. Dev Med Child Neurol 39(6):369–372

    CAS  PubMed  Google Scholar 

  • Oskoui M, Coutinho F, Dykeman J et al (2013) An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol 55:509–519

    PubMed  Google Scholar 

  • Osler SW (1987) The cerebral palsies of children. Mac Keith Press, London (Erstveröff. 1889)

    Google Scholar 

  • Paley GS, Smith BA, Glickman LB et al (2013) Systematic review and evidence based clinical recommendations for dosing of pediatric supported standing programs. Ped Phys Ther 25:232–247

    Google Scholar 

  • Palisano R, Rosenbaum P, Walter S et al (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223

    CAS  PubMed  Google Scholar 

  • Palmer L, Blair E, Petterson B et al (1995) Antenatal antecedents of moderate and severe cerebral palsy. Pediatr Perinat Epid 9:171–184

    CAS  Google Scholar 

  • Panteliadis CP, Häusler M (2011) Aetiological factors. In: Panteliadis CP (Hrsg) Cerebral palsy: a multidisciplinary approach. Dustri, München, S 55–67

    Google Scholar 

  • Parer JT, King T (2000) Fetal heart rate monitoring: is it salvageable? Am J Obst Gynecol 182:982–987

    CAS  Google Scholar 

  • Peacock WJ (2004) The pathophysiology of spasticity. In: Gage JR (Hrsg) The treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 164/165. Mac Keith Press, London, S 32–41

    Google Scholar 

  • Peacock W (2009) The pathophysiology of spasticity. In: Gage JR, Schwartz MH, Koop SE (Hrsg) The identification and treatment of gait problems in cerebral palsy. Clinics in developmental medicine, Bd. 180/181. Mac Keith Press, London, S 89–98

    Google Scholar 

  • Peltier LF (1993) Orthopaedics – a history and iconography. Norman Publications, San Francisco, S 233

    Google Scholar 

  • Perlstein MD, Barnett HE (1952) Natural history and recognition of cerebral palsy in infants. JAMA 148:1389–1397

    CAS  Google Scholar 

  • Perlstein MA, Hod PM (1964) Etiology of postnatally acquired cerebral palsy. JAMA 188:850–852

    CAS  PubMed  Google Scholar 

  • Perry J (1985) Orthopaedic surgery to reduce functional deficits following upper motor neuron lesions. In: Eccles J, Dimitijevic MR (Hrsg) Upper motor neuron functions and dysfunctions. Karger, Basel, S 114–127

    Google Scholar 

  • Perry J (1993) Determinants of muscle function in the spastic lower extremity. Clin Orthop Relat Res 288:10–26. Clin Orthop Relat Res 288:10–26

    PubMed  Google Scholar 

  • Pharoah MJ, Cooke T (1996) The changing epidemiology of cerebral palsy. Arch Dis Child 75:F169–F173

    CAS  Google Scholar 

  • Pharoah POD (1989) The epidemiology of cerebral palsy. Semin Orthop 4(4):205–214

    Google Scholar 

  • Porter D, Michael S, Kirkwood C (2007) Patterns of postural deformity in non-ambulant people with cerebral palsy: what is the relationship between the direction of scoliosis, direction of pelvic obliquity, direction of windswept hip deformity and side of hip dislocation? Clin Rehabil 21(12):1087–1096

    PubMed  Google Scholar 

  • Rang M, Silver R, de la Garza J (1986) Cerebral palsy. In: Lovell WW, Winter RB (Hrsg) Pediatric orthopaedics, 2. Aufl. Lippincott, Philadelphia, S 345–396

    Google Scholar 

  • Reid SM, Carlin JB, Reddihough DS (2012) Survival of individuals with cerebral palsy born in Victoria, Australia, between 1970 and 2004. Dev Med Child Neurol 54(4):353–360

    PubMed  Google Scholar 

  • Riad J, Finnbogason T, Broström E (2010) Leg length discrepancy in spastic hemiplegic cerebral palsy: a magnetic resonance imaging study. J Pediatr Orthop 30(8):846–850

    PubMed  Google Scholar 

  • Riad J, Modlesky CM, Gutierrez-Farewik EM et al (2012) Are muscle volume differences related to concentric muscle work during walking in spastic hemiplegic cerebral palsy? Clin Orthop Relat Res 470(5):1278–1285

    PubMed Central  PubMed  Google Scholar 

  • Riedinger J (1905) Ursachen und Entstehung der Deformitäten. In: Joachimsthal G (Hrsg) Handbuch der orthopädischen Chirurgie, Bd. 1. Gustav Fischer, Jena, S 1–152

    Google Scholar 

  • Robin J, Graham HK, Selber P et al (2008) Proximal femoral geometry in cerebral palsy: a population-based cross-sectional study. J Bone Joint Surg Br 90(10):1372–1379

    CAS  PubMed  Google Scholar 

  • Rogozinski BM, Davids JR, Davis RB et al (2007) Prevalence of obesity in ambulatory children with cerebral palsy. J Bone Joint Surg Am 89(11):2421–2426

    PubMed  Google Scholar 

  • Rose J, Gamble JG (1994) Human walking. Williams & Wilkins, Baltimore

    Google Scholar 

  • Rose J, McGill KC (2005) Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol 47(5):329–336

    PubMed  Google Scholar 

  • Rosenbaum PL, Palisano RJ, Bartlett DJ et al (2008) Development of the gross motor function classification system for cerebral palsy. Dev Med Child Neurol 50:249–253

    PubMed  Google Scholar 

  • Ross SA, Engsberg JR (2002) Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Dev Med Child Neurol 44(3):148–157

    PubMed  Google Scholar 

  • Ross SA, Engsberg JR (2007) Relationships between spasticity, strength gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil 88(9):1114–1120

    PubMed  Google Scholar 

  • Russell DJ, Gorter JW (2005) Assessing functional differences in gross motor skills in children with cerebral palsy who use ambulatory aids or orthoses: can the GMFM-88 help? Dev Med Child Neurol 47:462–467

    PubMed  Google Scholar 

  • Russell DJ, Rosenbaum PL (1989) The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol 31:341–352

    CAS  PubMed  Google Scholar 

  • Russell DJ, Rosenbaum PL, Avery LM et al (2002) Gross Motor Function Measure (GMFM-66 and GMFM-88) user’s manual Clinics in developmental medicine, Bd. 159. Mac Keith Press, London

    Google Scholar 

  • Sage FP (1987) Cerebral palsy. In: Crenshaw AH (Hrsg) Campbell’s operative orthopaedics, 7. Aufl. Mosby, St. Louis, S 2843–2923

    Google Scholar 

  • Sanders HM, Wright FV, Burtner PA (2012) Mobility. In: Majnemer A (Hrsg) Measures for children with developmental disabilities. Clinics in developmental medicine, Bd. 194–195. Mac Keith Press, London, S 326–355

    Google Scholar 

  • Sanger TD (2004) Toward a definition of childhood dystonia. Curr Opin Pediatr 16:623–627

    PubMed  Google Scholar 

  • Sanger TD, Chen D, Fehlings DL et al (2010) Definition and classification of hyperkinetic movements in childhood. Mov Disord 25:1538–1549

    PubMed Central  PubMed  Google Scholar 

  • Scher MS, Belfar H, Martin J (1991) Destructive brain lesions in presumed fetal onset: antepartum causes of cerebral palsy. Pediatrics 88:898–906

    CAS  PubMed  Google Scholar 

  • SCPE (Surveillance of Cerebral Palsy in Europe) (2002) Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 44:633–640

    Google Scholar 

  • Sheean G (2002) The pathophysiology of spasticity. Eur J Neurol 9(Suppl 1):3–9

    PubMed  Google Scholar 

  • Sheean G (2008) Neurophysiology of spasticity. In: Barnes MP, Johnson GR (Hrsg) Upper motor neurone syndrome and spasticity, 2. Aufl. Cambridge University Press, London, S 9–63

    Google Scholar 

  • Sheean G (2001) Neurophysiology of spasticity. In: Barnes MP, Johnson GR (Hrsg) Upper motor neuron syndrome and spasticity. Cambridge University Press, Cambridge, S 12–78

    Google Scholar 

  • Shevell MI, Majnemer A, Poulin C et al (2008) Stability of motor impairment in children with cerebral palsy. Dev Med Child Neurol 50:211–215

    PubMed  Google Scholar 

  • Shim ML, Moshang T (2004) Is treatment with growth hormone effectice in children with cerebral palsy. Dev Med Child Neurol 46:569–571

    PubMed  Google Scholar 

  • Sholas MG, Tann B, Gaebler-Spira D (2005) Oral bisphosphonates to treat disuse osteopenia in children with disabilities: a case series. J Pediatr Orthop 25(3):326–331

    PubMed  Google Scholar 

  • Shortland A (2009a) Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol 51(Suppl 4):59–63

    PubMed  Google Scholar 

  • Shortland AP, Harris CA, Gough M et al (2002) Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 44:158–163

    PubMed  Google Scholar 

  • Shumway C (1986) Cerebral palsy – management. In: Downie PA (Hrsg) Cash’s textbook of neurology for physiotherapists. Faber & Faber, London, S 525–551

    Google Scholar 

  • Sigurdardottir S, Eiriksdottir A, Gunnarsdottir E et al (2008) Cognitive profile in young icelandic children with cerebral palsy. Dev Med Child Neurol 50(5):357–362

    PubMed  Google Scholar 

  • Smith LR, Lee KS, Ward SR et al (2011) Hamstring contractures in children with spastic cerebral palsy result from stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol 589:2625–2639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spitzy H, Lange F (1930) Orthopädie im Kindesalter. FCW Vogel, Leipzig, S 439–461

    Google Scholar 

  • Stackhouse SK, Binder-McLeod SH, Lee SC et al (2005) Voluntary muscle activation, contractile properties and fatigability in children with and without cerebral palsy. Muscle Nerve 31:594–601

    PubMed Central  PubMed  Google Scholar 

  • Stanley F, Blair E, Alberman E (2000) Cerebral palsies: epidemiology and causal pathways Clinics in developmental medicine, Bd. 151. Mac Keith Press, London

    Google Scholar 

  • Stevenson RD, Roberts CD, Vogtle L (1995) The effects of non-nutritional factors on growth in cerebral palsy. Dev Med Child Neurol 37(2):124–130

    CAS  PubMed  Google Scholar 

  • Stevenson RD, Conaway M, Barrington JW et al (2006) Fracture rate in children with cerebral palsy. Pediatr Rehabil 9:396–403

    PubMed  Google Scholar 

  • Strauss D, Brooks J, Rosenbloom L et al (2008) Life expectancy in cerebral palsy: an update. Dev Med Child Neurol 50:487–493

    PubMed  Google Scholar 

  • Surveillance of Cerebral Palsy in Europe (SCPE) (2000) Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol 42(12):816–824

    Google Scholar 

  • Surveillance of Cerebral Palsy in Europe (SCPE) (2002) Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 44(9):633–640

    Google Scholar 

  • Svehlík M, Kraus T, Steinwender G et al (2012) The Baumann procedure to correct equinus gait in children with diplegic cerebral palsy: long-term results. J Bone Joint Surg Br 94(8):1143–1147

    PubMed  Google Scholar 

  • Tabary JC, Goldspink G, Tardieu C et al (1971) Nature de la rétraction musculaire des IMC: mésure de l’allongement des sarcomères du muscle étiré. Rev Chir Orthop 57:463–470

    CAS  PubMed  Google Scholar 

  • Tabary JC, Tabary C, Tardieu C et al (1972) Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol (London) 224:231–244

    CAS  Google Scholar 

  • Tachdjian MO, Minear WL (1958) Sensory disturbances in the hands of children with cerebral palsy. J Bone Joint Surg AM 40(1):85–90

    PubMed  Google Scholar 

  • Tardieu G, Tardieu C (1981) Rétraction, hypertonie, hypotonie, hyperextensibilité, hypoextensibilité. Evaluation et indications therapeutiques. Neuropsychiatr Enf Adolesc 29:553–567

    CAS  Google Scholar 

  • Tardieu G, Tardieu C (1987) Cerebral palsy. Mechanical evaluation and conservative correction of limb joint contractures. Clin Orthop Relat Res 219:63–69

    PubMed  Google Scholar 

  • Tardieu G, Tardieu C, Hariga J et al (1968) Treatment of spasticity by injection of dilute alcohol at the motor point or by epidural route. Dev Med Child Neurol 10:555–568

    CAS  PubMed  Google Scholar 

  • Tardieu C, Huet de la Tour E, Bret MD et al (1982a) Muscle hypoextensibility in children with cerebral palsy I: clinical and experimental observations. Arch Phys Med Rehabil 63:97–102

    CAS  PubMed  Google Scholar 

  • Tardieu G, Tardieu C, Colbeau-Justin P et al (1982b) Muscle hypoextensibility in children with cerebral palsy II: therapeutic implications. Arch Phys Med Rehabil 63:103–112

    CAS  PubMed  Google Scholar 

  • Tardieu C, Lespargot A, Tabary C et al (1989) Letters to the editor. Dev Med Child Neurol 31:117–118

    Google Scholar 

  • Tardieu C, Lespargot A, Tabary C et al (1998) For how long must the soleus muscle be stretched each day to prevent contracture? Dev Med Child Neurol 30(1):3–10

    Google Scholar 

  • Tedroff K, Knutson LM, Soderberg GL (2006) Synergistic muscle activation during maximum voluntary contractions in children with and without spastic cerebral palsy. Dev Med Child Neurol 48:789–796

    PubMed  Google Scholar 

  • Tillmann BN (2010) Atlas der Anatomie des Menschen, 2. Aufl. Springer, Heidelberg, S 494

    Google Scholar 

  • Tilton A (2009) Management of spasticity in children with cerebral palsy. Semin Pediatr Neurol 16:82–89

    PubMed  Google Scholar 

  • Van Heest AE, House J, Putnam M (1993) Sensibility deficiencies in the hands of children with spastic hemiplegia. J Hand Surg Am 18(2):278–281

    PubMed  Google Scholar 

  • Volpe J (1992) Value of MR in definition of the neuropathology of cerebral palsy in vivo. Am J Neuroradiol 13:79–83

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2003) Cerebral white matter injury of the premature infant: more common than you think. Pediatrics 112:176–180

    PubMed  Google Scholar 

  • Vos-Vromans DC, Ketelaar M, Gorter JW (2005) Responsiveness of evaluative measures for children with cerebral plasy: the gross motor function measure and the pediatric evaluation of disability inventory. Disabil Rehabil 27:1245–1252

    CAS  PubMed  Google Scholar 

  • Walsh EG (1992) Muscles, masses and motion: the physiology of normality, hypotonicity, spasticity and rigidity Clinics in developmental medicine, Bd. 125. Mac Keith Press, Oxford

    Google Scholar 

  • Wenger DR, Rang M (1993) The art and practice of children’s orthopaedics. Raven Press, New York

    Google Scholar 

  • Wiley ME, Damiano DL (1998) Lower extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107

    CAS  PubMed  Google Scholar 

  • Willerslev-Olsen M, Lorentzen J, Sinkjaer T et al (2013) Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol 55(7):617–623 doi:10.1111/dmcn.12124

    PubMed  Google Scholar 

  • Yelnik AP, Simon O, Parratte B et al (2010) How to clinically assess and treat muscle overactivity in spastic paresis. J Rehabil Med 42:801–807

    PubMed  Google Scholar 

  • Yokochi K, Hosoe A, Shimabukuro S et al (1990) Gross motor patterns in children with cerebral palsy and spastic diplegia. Pediatr Neurol 6(4):245–250

    CAS  PubMed  Google Scholar 

  • Zhao H, Wu YN, Hwang M et al (2011) Changes of calf muscle tendon biomechanical properties induced by passive stretching and active movement training in children with cerebral palsy. J Appl Physiol 111:435–442

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Döderlein .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Döderlein, L. (2015). Infantile Zerebralparese. In: Infantile Zerebralparese. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35319-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35319-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35318-5

  • Online ISBN: 978-3-642-35319-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics