Advertisement

An Experimental Based Study on Different Sources of Noise for High Dynamic Range Imaging

  • B. Ravi Kiran
  • M. Madhavi
  • M. Kranthi Kiran
  • S. R. Mishra
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

In image processing, computer graphics, and photography, high dynamic range imaging (HDRI or simply HDR) is set of techniques that allow a grater dynamic range between the lightest and darkest areas of an image than current standard digital imaging techniques or photographic methods. By fusing several low dynamic range (LDR) images together we can get a high dynamic range image. In this process we need to fuse less noisy LDR images together in order to get more pleasing output images. A detailed study on different sources of noise is carried out on this paper. They include photon shot noise, read noise, pattern noise, pixel response non-uniformity (PRNU), quantization error and thermal noise. We used a Canon DSLR camera for experimental results.

Keywords

Noise High Dynamic Range (HDR) Imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyuz, A.O., Reinhard, E.: Noise reduction in high dynamic range imaging. Journal of Visual Communication and Image Representation 18(5), 366–376 (2007)CrossRefGoogle Scholar
  2. 2.
    Martinec, E.: Noise, Dynamic Range and Bit Depth in Digital SLRs. Internet (May 22, 2008), http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/ (February 15, 2012)
  3. 3.
    Hasinoff, S.W., Durande, F., Freeman, W.T.: Noise-Optimal Capture for High Dynamic Range Photography. Massachusetts Institute of Technology Computer Science and Artificial Intelligence LaboratoryGoogle Scholar
  4. 4.
    Bell, A.A., Seiler, C., Kaftan, J.N., Aach, T.: Noise in high dynamic range imaging. In: ICIP 2008, pp. 561–564. IEEE (2008)Google Scholar
  5. 5.
    Choubey, B., Collins, S.: Fixed pattern noise correction for wide dynamic range linear-logarithmic pixels. IEEE (2007)Google Scholar
  6. 6.
    Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range improvement using multiple exposures. Journal of Electronic Imaging 12(2), 219–228 (2003)CrossRefGoogle Scholar
  7. 7.
    Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. TPAMI 30(2), 299–314 (2008)CrossRefGoogle Scholar
  8. 8.
    Clark, R.N.: Digital camera sensor performance summary (2012), http://www.clarkvision.com/imagedetail/digital.sensorperformance.summary/
  9. 9.
    Grossberg, M.D., Nayar, S.K.: High dynamic range from multiple images: Which exposures to combine? In: Workshop on Color and Photometric Methods in Comp. Vision, pp. 1–8 (2003)Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Brajovic, V.: Brightness perception, dynamic range and noise unifying model for adaptive image sensors. In: CVPR 2004. IEEE (2004)Google Scholar
  13. 13.
    Silwal, S., Wang, H., Maldonado, D.: Assessment of Randome –Noise Contamination in Digital Images via Testing on wavelet CoefficentsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Ravi Kiran
    • 1
  • M. Madhavi
    • 1
  • M. Kranthi Kiran
    • 1
  • S. R. Mishra
    • 1
  1. 1.Anil Neerukonda Institute of Technology and SciencesVisakhapatnamIndia

Personalised recommendations