A Fitness-Based Adaptive Differential Evolution Approach to Data Clustering

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

Fuzzy clustering helps to find natural vague boundaries in data. The fuzzy c-means (FCM) is one of the most popular clustering methods based on minimization of a criterion function as it works fast in most scenarios. However, it is sensitive to initialization and is easily trapped in local optima. In this work, a fuzzy clustering (FC) algorithm based on Differential Evolution (DE) is proposed. Here we use a DE with Fitness Based Adaptive Technique (FBADE) for the adaptation of DE parameters. 3 well-known data sets viz. Iris, Wine, Motorcycle and 2 synthetic datasets are used to demonstrate the effectiveness of the algorithm. The resulting algorithm is compared with conventional Fuzzy C-Means (FCM) algorithm, FCM with DE (FCM-DE), FCM with Self Adaptive DE (FCM-SADE).

Keywords

Differential Evolution Fuzzy Clustering Global Optimization Evolutionary Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.C.: Fuzzy Mathematics in Pattern Classification, Ph. D. thesis, Center for Applied Mathematics, Cornell University (1973)Google Scholar
  2. 2.
    Kuncheva, L.I., Bezdek, J.C.: Selection of cluster prototypes from data by a genetic algorithm. In: Proc. 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT), Aachen, Germany, vol. 18, pp. 1683–1688 (1997)Google Scholar
  3. 3.
    Sun, L.X., Danzer, K.: Fuzzy cluster analysis by simulate annealing. Journal of Chemometrics 10, 325–342 (1996)CrossRefGoogle Scholar
  4. 4.
    Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation 3, 103–112 (1999)CrossRefGoogle Scholar
  5. 5.
    Al-Sultan, K.S., Fedjki, C.A.: A tabu search-based algorithm for the fuzzy clustering problem. Pattern Recognition 30, 2023–2030 (1997)CrossRefGoogle Scholar
  6. 6.
    Runkler, T.A., Katz, C.: Fuzzy Clustering by Particle Swarm Optimization. In: IEEE International Conference on Fuzzy Systems, pp. 601–608 (2006)Google Scholar
  7. 7.
    Das, S., Sil, S.: Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm. Information Sciences 180(8), 1237–1256 (2010)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kao, Y., Lin, J., Huang, S.: Fuzzy Clustering by Differential Evolution. Intelligent Systems Design and Application (1), 246–250 (2008)Google Scholar
  9. 9.
    Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Zhang, J., Sanderson, A.C.: JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958 (2009)CrossRefGoogle Scholar
  11. 11.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  12. 12.
    Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)CrossRefGoogle Scholar
  13. 13.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with strategy adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 13(2) (2009)Google Scholar
  14. 14.
    Salman, A., Engelbrecht, A.P., Omran, M.G.H.: Empirical analysis of self-adaptive differential evolution. European Journal of Operational Research 183, 785–804 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    Ravi, V., Aggarwal, N., Chauhan, N.: Differential Evolution Based Fuzzy Clustering. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 38–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 24(4), 656–667 (1994)CrossRefGoogle Scholar
  17. 17.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. R. Patra
    • 1
  • T. Singha
    • 1
  • S. S. Choudhury
    • 1
  • S. Das
    • 2
  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.Engineering and Communication Sciences UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations