Advertisement

Optimal Scheduling of Short Term Hydrothermal Coordination for an Indian Utility System Using Genetic Algorithm

  • S. Padmini
  • C. Christober Asir Rajan
  • Subhronil Chaudhuri
  • Arkita Chakraborty
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

This paper addresses short-term scheduling of two test hydrothermal systems by using Genetic algorithm. Short-term hydrothermal coordination consists of determining the optimal usage of available hydro and thermal resources during a scheduling period of time.Genetic algorithm is applied to determine the optimal hourly schedule of power generation in a hydrothermal power system. The developed algorithm is illustrated for a test system an Indian Utility System which consists of 7 hydro and 4 thermal systems respectively. The effectiveness and stochastic nature of proposed algorithm has been tested with standard test case and the results have been proved to be better than conventional method and results obtained by the proposed method are superior in terms of fuel cost.

Keywords

Short-term Hydrothermal Scheduling Genetic algorithm discharge rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood, A.J., Wollenberg, B.F.: Power Generation, Operation and Control. John Wiley and Sons, New York (1984)Google Scholar
  2. 2.
    Sinha, N., Chakrabarti, R.: Fast Evolutionary Programming Techniques For Short-Term Hydrothermal Scheduling. IEEE Trans. PWRS 18(1), 214–219 (2003)Google Scholar
  3. 3.
    Ferrero, R.W., Rivera, J.F., Shahidehpour, S.M.: A dynamicprogramming two-stage algorithm for long-termhydrothermal scheduling of multireservoir systems. IEEE Transactions on Power Systems 13(4), 1534–1540 (1998)CrossRefGoogle Scholar
  4. 4.
    Gil, E., Rudnick, H.: Short-term hydrothermal generation scheduling model using a genetic algorithm. IEEE Transactions on Power Systems 18(4), 1256–1264 (2003)CrossRefGoogle Scholar
  5. 5.
    Mandal, K.K., Basu, M., Chakraborty, N.: Particle swarm optimization technique based short-term hydrothermal scheduling. Applied Soft Computing 8(4), 1392–1399 (2007)CrossRefGoogle Scholar
  6. 6.
    Wong, K.P., Wong, Y.W.: Short-term hydrothermal scheduling, part-I: Simulated. Annealing approach. IEE Proc., Part- C 141(5), 497–501 (1994)Google Scholar
  7. 7.
    Christober Asir Rajan, C.: Hydrothermal unit commitment problem using simulated annealing embedded evolutionary programming approach. Electrical Power and Energy Systems 33, 939–946 (2011)CrossRefGoogle Scholar
  8. 8.
    Sinha, N., Chakrabarti, R.: Fast Evolutionary Programming Techniques For Short-Term Hydrothermal Scheduling. IEEE Trans. PWRS 18(1), 214–219 (2003)Google Scholar
  9. 9.
    Suman, D.S., Nallasivan Joseph Henry, C., Ravichandran, S.: A Novel Approach for Short-Term Hydrothermal Scheduling Using Hybrid Technique. In: IEEE Power India Conference, April 10-12 (2006)Google Scholar
  10. 10.
    Padmini, S., Rajan, C.C.A., Murthy, P.: Application of Improved PSO Technique for Short Term Hydrothermal Generation Scheduling of Power System. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 176–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Sinha, N., Loi-Lei Lai, N.: Meta Heuristic Search Algorithms for Short-Term Hydrothermal Scheduling. In: International Conference on Machine Learning and Cybernetics, Dalian (2006)Google Scholar
  12. 12.
    Hotaa, P.K., Barisala, A.K., Chakrabarti, R.: An improved PSO technique for short-term optimal hydrothermal scheduling. Electric Power Systems Research 79(7), 1047–1053 (2009)CrossRefGoogle Scholar
  13. 13.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE T. on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  14. 14.
    Dhillon, J.S., Parti, S.C., Kothari, D.P.: Fuzzy decision–making in stochastic multiobjective short-term hydrothermal Scheduling. IEEE Trans. Proc. -Generation,Transmission and Distribution 149(2), 191–200 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Padmini
    • 1
  • C. Christober Asir Rajan
    • 2
  • Subhronil Chaudhuri
    • 1
  • Arkita Chakraborty
    • 1
  1. 1.Department of Electrical and Electronics EngineeringSRM UniversityChennaiIndia
  2. 2.Department of Electrical and Electronics EngineeringPondichery UniversityChennaiIndia

Personalised recommendations