A Non-Fuzzy Self-Tuning Scheme of PD-Type FLC for Overhead Crane Control

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

A non-fuzzy self-tuning scheme is proposed for Fuzzy PD controller in this paper. To eliminate the design complexity, output scaling factor (SF) of the proposed fuzzy controller is updated according to the process trend by a gain modification factor, which is determined by the normalized change of error of the system and its number of fuzzy partitions. The proposed non-fuzzy self-tuning fuzzy PD controller (NFST-FPDC) is demonstrated on a laboratory scale overhead crane. Moving a suspended load along a pre-specified path is not an easy task when strict specifications on the swing angle and transfer time need to be satisfied. In this study, twin NFST-FPDC are designed to control the trolley position of the crane and swing angle of the load. The proposed non-fuzzy gain tuning scheme guarantees a fast and precise load transfer and the swing suppression during load movement, despite of model uncertainties.

Keywords

Fuzzy control Crane position control Swing angle Self-tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hong, K.S., Ngo, Q.H.: Port Automation: modeling and control of container cranes. In: Inter. Conf. on Instrumentation, Control and Automation, pp. 19–26 (October 2009)Google Scholar
  2. 2.
    Hamalainen, J.J., Marttinen, A., Baharova, L., et al.: Optimal path planning for a trolley crane: fast and smooth transfer of load. In: IEE Proc. Control Theory and Applications, vol. 142(1), pp. 51–57 (1995)Google Scholar
  3. 3.
    Li, C., Lee, C.Y.: Fuzzy motion control of an auto-warehousing crane system. IEEE Trans. on Ind. Electron. 48(5), 983–994 (2001)CrossRefGoogle Scholar
  4. 4.
    Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainity and actuator nonlinearity using an adaptive fuzzy sliding mode control. IEEE Trans. on Industrial Electronics 55(11), 3972–3984 (2008)CrossRefGoogle Scholar
  5. 5.
    Sorensen, K.L., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and grany cranes. Control Engineering Practice 15, 825–837 (2007)CrossRefGoogle Scholar
  6. 6.
    Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller—Parts I, II. IEEE Trans. on Syst., Man, Cybern. 20, 404–435 (1990)CrossRefMATHGoogle Scholar
  7. 7.
    Shinskey, F.G.: Process Control Systems—Application, Design, and Tuning. McGraw-Hill, New York (1998)Google Scholar
  8. 8.
    Malki, H.A., Li, H., Chen, G.: New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Trans. on Fuzzy Systems 2, 245–254 (1994)CrossRefGoogle Scholar
  9. 9.
    Mudi, R.K., Pal, N.R.: A Self-Tuning Fuzzy PD Controller. IETE Journal of Research (Special Issue on Fuzzy Systems) 44(4&5), 177–189 (1998)Google Scholar
  10. 10.
    Mudi, R.K., Pal, N.R.: A robust self-tuning scheme for PI and PD type fuzzy control- lers. IEEE Trans. on Fuzzy Systems 7(1), 2–16 (1999)CrossRefGoogle Scholar
  11. 11.
    Mudi, R.K., Pal, N.R.: A self-tuning fuzzy PI controllers. Fuzzy Sets and Systems 115, 327–338 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Pal, N.R., Mudi, R.K., Pal, K., Patranabis, D.: Rule Extraction through Exploratory Data Analysis for Self-Tuning Fuzzy Controller. Int. J. of Fuzzy Systems 6(2), 71–80 (2004)MathSciNetGoogle Scholar
  13. 13.
    Pal, A.K., Mudi, R.K.: Self-Tuning Fuzzy PI controller and its application to HVAC system. IJCC (US) 6(1), 25–30 (2008)Google Scholar
  14. 14.
    Pal, A.K., Mudi, R.K.: Development of a Self-Tuning Fuzzy Controller through Relay Feedback Approach. In: Das, V.V. (ed.) CIIT 2011. CCIS, vol. 250, pp. 424–426. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Chang, C., Hsu, S., Chiang, K.: A practical fuzzy controllers scheme of overhead crane. Journal of Control Theory and Applications 3, 266–270 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Liu, D., Yi, J., Zhao, D., Wang, W.: Adaptive sliding mode fuzzy control for a two dimensional overhead crane. Mechatronics 15, 505–522 (2005)CrossRefGoogle Scholar
  17. 17.
    Yang, J.H., Yang, K.S.: Adaptive coupling control for overhead crane systems. Mechatronics 17(2/3), 143–152 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of A.E.I.EHITKolkataIndia
  2. 2.Dept. of I.E.EJadavpur UniversityKolkataIndia
  3. 3.Dept. of E.I.EDBCRECDurgapurIndia

Personalised recommendations