Advertisement

Parametric Performance Evaluation of Different Types of Particle Swarm Optimization Techniques Applied in Distributed Generation System

  • S. Kumar
  • S. Sau
  • D. Pal
  • B. Tudu
  • K. K. Mandal
  • N. Chakraborty
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

This paper presents performance comparative study of various particle swarm optimization (PSO) techniques for the placement of generator units in the distributed generation (DG) system. For the installation of generator units in the distributed generation system, it is very important to know the generator sizing and its placement in the network system for reducing the line losses and hence the cost. Various PSO techniques such as Canonical PSO, Hierarchical PSO (HPSO), Time varying acceleration coefficient (TVAC) PSO, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients (HPSO-TVAC), Stochastic inertia weight (Sto-IW) PSO and Time varying inertia weight (TVIW) PSO have been used for comparative study. Here the main objective function (OF) is to minimize the system cost. These techniques have been tested on the standard IEEE-14 bus, IEEE-30 bus and IEEE-57 bus network system by the use of MATLAB software.

Keywords

Distributed Generation (DG) Particle Swarm Optimization (PSO) Sizing Location IEEE-14 IEEE-30 IEEE-57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghosh, S., Ghoshal, S.P., Ghosh, S.: Optimal sizing and placement of distributed generation in a network system. Electrical Power and Energy Systems 32, 849–856 (2010)CrossRefGoogle Scholar
  2. 2.
    Rahman, T.K.A., Rahim, S.R.A., Musirin, I.: Optimal allocation and sizing of embedded generators. In: Proceedings of the National Power and Energy Conference, PECon 2004, pp. 288–294 (2004)Google Scholar
  3. 3.
    Krueasuk, W., Ongsakul, W.: Optimal Placement of Distributed Generation Using Particle Swarm Optimization. In: Australian Universities Power Engineering Conference, December 10-13 (2006)Google Scholar
  4. 4.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization, pp. 1942–1948. IEEE (1995)Google Scholar
  5. 5.
  6. 6.
    de Oca, M.A.M.: Particle Swarm Optimization Introduction. IRIDIA-CoDE (May 7, 2007) Google Scholar
  7. 7.
  8. 8.
    Wong, L.Y., Rafidah, S., Rahim, A., et al.: Distributed Generation Installation Using Particle Swarm Optimization. In: The 4th International Power Engineering and Optimization Conf (PEOCO 2010), Shah Alam, Selangor, Malaysia, June 23-24 (2010)Google Scholar
  9. 9.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  10. 10.
    de Oca, M.A.M., Stützle, T., Birattari, M., Dorigo, M.: A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8(3) (June 2004)Google Scholar
  12. 12.
    Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, pp. 94–100. IEEE Press, Piscataway (2001)Google Scholar
  13. 13.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE Press, Piscataway (1998)Google Scholar
  14. 14.
    Zheng, Y.L., Ma, L.H., Zhang, L.Y., Qian, J.X.: Empirical study of particle swarm optimizer with an increasing inertia weight. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation, pp. 221–226. IEEE Press, Piscataway (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Kumar
    • 1
  • S. Sau
    • 1
  • D. Pal
    • 1
  • B. Tudu
    • 1
  • K. K. Mandal
    • 1
  • N. Chakraborty
    • 1
  1. 1.Power Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations