A New Substitution Block Cipher Using Genetic Algorithm

  • Srinivasan Nagaraj
  • D. S. V. P. Raju
  • Kishore Bhamidipati
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)


In cryptography, a substitution block cipher is a method of encryption by which units of plain text are replaced with cipher text according to a regular system. The receiver deciphers the text by performing an inverse substitution. If the cipher operates on single blocks, it is termed as simple substitution block cipher. We proposed an algorithm which considers a random matrix key which on execution of a sequence of steps generates a sequence. Based on the equality of values, this sequence is being divided into basins. Each basin represents one block of data on which the genetic algorithm operations like crossover and mutation are performed. Each block of plain text is replaced by summation of ASCII value of plain text and the sequence is generated to form the cipher text. Thus, the cipher text obtained is very difficult to be broken without knowing the key, which provides high security.


Genetic Algorithm (GA) random matrix key basins sequence generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorodilov, A., Morozenko, V.: Genetic Algorithms for finding the key’s length and crypto analysis of the permutation cipher. International Journal Information Theories and Applications 15 (2008)Google Scholar
  2. 2.
    Delman, B.: Genetic Algorithms in Cryptography, published in web (July 2004)Google Scholar
  3. 3.
    Whitley, D.: A Genetic Algorithm Tutorial, Computer Science Department, Colorado State University, Fort Collins, CO 80523Google Scholar
  4. 4.
    Spillman, R., Janssen, M., Nelson, B., Kepner, M.: Use of a Genetic Algorithm in the Cryptanalysts of Simple Substitution Ciphers. Cryptologia 16(1), 31–34 (1993)CrossRefGoogle Scholar
  5. 5.
    Stallings, W.: Cryptography and Network Security: Principles and Practices, 3rd edn. Pearson Education (2004)Google Scholar
  6. 6.
    Bose, R.: Introduction to Cryptography – – Tata Mc-Grew–hill Publisher ltd. (2001) Google Scholar
  7. 7.
    Koblitz, N.: A course in number theory and Cryptography. Springer-Verlag, New York, Inc. (1994)Google Scholar
  8. 8.
    Nalani, N., Raghavendra Rao, G.: Cryptanalysis of Simplified Data Encryption Standard via Optimisation Heuristics. IJCSNS 6(1B) (January 2006)Google Scholar
  9. 9.
    Simmons, S.: Algebric Cryptoanalysis of Simplified AES. Proquest Science Journals 33(4), 305 (2009)MATHMathSciNetGoogle Scholar
  10. 10.
    Ravi, S., Knight, K.: Attacking Letter Substitution Ciphers with Integer Programming. Proquest Science Journals 33(4), 321 (2009)MATHGoogle Scholar
  11. 11.
    Kumar, A., Kumar, A.: Development of New Cryptographic Construct using Palmprint Based Fuzzy voult. EURASIP Journal on Adv. in Signal Processing 21, 234–238 (2009)Google Scholar
  12. 12.
    Wang, B., Wu, Q., Hu, Y.: A Knapsack Based Probabilistic Encryption Scheme (March 2007),
  13. 13.
    Bluekrypt 2009: Cryptographic Key length Recommendations Google Scholar
  14. 14.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number generator. SIAM J. Compute 15(2), 364–383 (1986)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Srinivasan Nagaraj
    • 1
  • D. S. V. P. Raju
    • 2
  • Kishore Bhamidipati
    • 3
  1. 1.Dept. of CSEGMRITRajamIndia
  2. 2.CSEAndhra UniversityVisakhapatnamIndia
  3. 3.Dept. of CSEMITManipalIndia

Personalised recommendations