Advertisement

Simulation of Frequency Dependent Transmission Line for Identification of Faults and Switching over Voltages

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

Though transmission lines are designed to ensure a reliable supply of energy with the highest possible continuity, but about 85-87% of faults in power system occur in transmission lines. Faults can occur due to external causes or internal failures. Identification of type and location of fault is extremely necessary to reduce the outage time and maintenance works. Switching phenomenon occurring in transmission lines often produces similar types of transients as that of faults, making the identification task even more difficult. The present paper discusses about the simulation of symmetrical, unsymmetrical faults, arc faults and a special case of switching transient on a frequency dependent line model. Fault identification has been performed with the help of Short Time Fourier Transform (STFT). STFT has been used to characterize the transient waveforms occurring due to disturbances in time and frequency domain. The study reveals that the amplitude and frequency of the first predominant peak present in the STFT coefficients after the disturbance occurs can help to identify the type of disturbance.

Keywords

Electro Magnetic Transients Programming (EMTP) switching over voltages transmission line fault identification Short Time Fourier Transform (STFT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaunt, C.T.: Causes of faults on a transmission line in Mozambique- Case studyGoogle Scholar
  2. 2.
    Ross, I.K.P.: “Voltage Sags: An Explanation-Causes, Effects and Correction - Part I. Electricity Today Magazine, 37–39 (November/December 2007)Google Scholar
  3. 3.
    Mathur, R.M., Wang, X.: Real-Time Digital Simulator of the Electromagnetic Transients of Power Transmission lines. IEEE/PES 1988, Summer Meeting, Portland, Oregon, July 24-29, SM-584-5 (1988)Google Scholar
  4. 4.
    Hedman, D.E.: Propagation on Overhead Transmission lines. Pt.2–Earth conduction effects and Practical Results. IEEE Trans. PAS-84, 205–211 (1965)Google Scholar
  5. 5.
    Budner, A.: Introduction of Frequency-Dependent Line Parameters into an Electromagnetic Transients Program. IEEE Trans. PAS-89, 88–97 (1970)Google Scholar
  6. 6.
    Snelson, J.K.: Propagation of Travelling Waves on Transmission lines–Frequency Dependent Parameters. IEEE Trans. PAS-91, 85–91 (1972)Google Scholar
  7. 7.
    Meyer, W.S., Dommel, H.W.: Numerical Modelling of Frequency-Dependent Transmission Line Parameters in an Electromagnetic Transients Program. IEEE Trans. PAS-93, 1401–1409 (1974)Google Scholar
  8. 8.
    Semlyen, A., Dabuleanu, A.: Fast and Accurate Switching Transient Calculations on Transmission Lines with Ground Return Using Recursive convolutions. IEEE Trans. PAS-94, 561–571 (1975)Google Scholar
  9. 9.
    Marti, J.R.: Accurate Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transients Simulation. IEEE Trans. PAS-101, 147–157 (1982)Google Scholar
  10. 10.
    Bergeron, L.: Du Coup de Belier en Hydraulique au Coup de Foudre en Electricite Dunod, France (1949)Google Scholar
  11. 11.
    Marti, L.: Low-order Approximation of Transmission Line Parameters for Frequency-Dependent Models. IEEE Trans. PAS-102, 3582–3589 (1983)Google Scholar
  12. 12.
    Kale, V.S., Bhide, S.R., Bedekar, R.P., Mohan, G.V.K.: Detection and classification of faults on parallel transmission lines using wavelet transform and neural network. International Journal of Electric and Electronics Engineering 1, 364–368 (2008)Google Scholar
  13. 13.
    Mahanty, R.N., Dutta Gupta, P.B.: Application of RBF neural network to fault classification and location in transmission lines. IEE Proc.-Gener. Transm. Distrib. 151(2), 201–212 (2004)CrossRefGoogle Scholar
  14. 14.
    Aggarwal, R.K., Xuan, Q.Y., Johns, A.T., Dunn, R.W., Bennett, A.: A novel fault classification technique for double circuit lines based on a combined unsupervised/supervised neural network. IEEE Transactions on Power Delivery 14(4), 1250–1256 (1999)CrossRefGoogle Scholar
  15. 15.
    Abur, A., Ozgun, O., Magnago, F.H.: A Wavelet Transform-Based Method for Improved Modeling of Transmission Lines. IEEE Transactions on Power Systems 18(4), 1432–1438 (2003)CrossRefGoogle Scholar
  16. 16.
    Das, B., Reddy, J.V.: Fuzzy-logic-based fault classification scheme for digital distance protection. IEEE Transactions on Power Delivery 20, 609–616 (2005)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Keerthipala, W.W.L.: Fuzzy-neuro approach to fault classification for transmission line protection. IEEE Transactions on Power Delivery 13(4), 1093–1104 (1998)CrossRefGoogle Scholar
  18. 18.
    Jaya Bharata Reddy, M., Mohanta, D.K.: Performance Evaluation of an Adaptive-Network-Based Fuzzy Inference System Approach for Location of Faults on Transmission Lines Using Monte Carlo Simulation. IEEE Transactions on Fuzzy Systems 16(4), 909–919 (2008)CrossRefGoogle Scholar
  19. 19.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer (1966)Google Scholar
  20. 20.
    Das, J.C.: Switching Transients and Temporary Over voltages. In: Transients in Electrical Systems: Analysis, Recognition and Mitigation, ch. 4, 7, pp. 65–66, 81–84, 155–157, 168–170Google Scholar
  21. 21.
    Maezono, P.K., Altman, E., Brito, K., dos Santos Mello Maria, V.A., Magrin, F.: Very High-Resistance Fault on a 525 kV Transmission Line – Case StudyGoogle Scholar
  22. 22.
    Elkalashy, N.I., Lehtonen, M., Darwish, H.A., Izzularab, M.A., Taalabl, A.-M.I.: Modeling and Experimental Verification of High Impedance Arcing Fault in Medium Voltage Networks. IEEE Transactions on Dielectrics and Electrical Insulation 14(2), 375–383 (2007)CrossRefGoogle Scholar
  23. 23.
    Goda, Y., Iwata, M., Ikeda, K., Tanaka, S.-I.: Arc Voltage Characteristics of High Current Fault Arcs in Long Gaps. IEEE Transactions on Power Delivery 15(2), 791–795 (2000)CrossRefGoogle Scholar
  24. 24.
    Kizilcay, M., La Seta, P.: Digital simulation of fault arcs in medium-voltage Distribution networks. In: 15th PSCC, Liege, Session 36, Paper 3, August 22-26, pp. 1–7 (2005)Google Scholar
  25. 25.
    Johns, A.T., Aggarwal, R.K., Song, Y.H.: Improved techniques for modeling fault arcs on faulted EHV transmission systems. IEE Proc. -Gener. Transm., Distrib. 141(2), 148–154 (1994)CrossRefGoogle Scholar
  26. 26.
    Alternative Transient Program, User Manual and Rule Book, EMTP Center, Leuven, Belgium (1987)Google Scholar
  27. 27.
    Maher, R.C.: FFT based filtering and the Short time Fourier Transform (STFT). ECEN4002/5002 DSP Laboratory (Spring 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentDr. Sudhir Chandra Sur Degree Engineering College WBUT and AICTEDumdum, KolkataIndia
  2. 2.Electrical Engineering DepartmentNational Institute of TechnologyDurgapurIndia

Personalised recommendations