Comparative Study of Artificial Emotional Intelligence Structuring Social Agent Behavior Based on Graph Coloring Problem

  • A. Kavitha
  • S. Sandhya Snehasree
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

Building Software Models based on social agent behavior is very non-static and highly complicated. There have been various architectures proposed to model computer software to collaborate these multi-agent models. The commutation frameworks are efficiently managed by the most emerging technique reputation models. This paper is being proposed to formulate a social agent behavior based on three factors - ethical constraints, stress avoidance, and emotional interference. The framed scenario is applied to solve the Graph Coloring Problem. The agents make decisions based on the information obtained from environment. An agent applies reactive rules to move from Artificial Emotional Intelligence under Ethical Constraints in Formulating Social Agent Behavior - one color lattice to another and to satisfy as many violated constraints as possible and finally reach a zero position where it has no violated constraints at all. There four different reactive behaviors were specified.

Keywords

Multi-agent based systems social impulses cultural algorithm Graph Coloring Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang, Y., Liu, J., Jin, X.: Agent Compromises in Distributed Problem Solving. In: Liu, J., Cheung, Y.-M., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 35–42. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Kobti, Z., Rahaman, S., Snowdon, A.W., Kent, R.D.: A Reputation Model Framework for Artificial Societies: A Case Study in Child Vehicle Safety Simulation. In: Bergler, S. (ed.) Canadian AI. LNCS (LNAI), vol. 5032, pp. 185–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Kobti, Z., Rahaman, S., Snowdon, A.W., Kent, R.D.: A cultural algorithm to guide driver learning in applying child vehicle safety restraint. In: IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada, July 16-21, pp. 1111–1118 (2006)Google Scholar
  4. 4.
  5. 5.
    Brelaz, D.: New méthods to color vertices of a graph. Communications of ACM 22, 251–256 (1979)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hertz, A., De Werra, D.: Using Tabu search techniques for graph coloring. Computing 39, 345–351 (1987)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chams, M., Hertz, A., De Werra, D.: Some experiments with simulated annealing for coloring graphs. EJOR 32, 260–266 (1987)CrossRefMATHGoogle Scholar
  8. 8.
    Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. In: Laporte, D.G., Osman, I.H. (eds.) Metaheuristics in Combinatorial Optimization, Annals of Operations Research, vol. 63, pp. 437–441 (1996)Google Scholar
  9. 9.
    Hamiez, J.-P., Hao, J.-K.: Scatter Search for Graph Coloring. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 168–179. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Maniezzo, V., Colorani, A.: The ant system: An Autocatalytic optimizing process. Technical Report 91-016 RevisedGoogle Scholar
  11. 11.
    Galinier, P.: Hybrid Evolutionary Algorithms for graph coloring. J. Combin. Optim. 3(4), 379–397 (1999)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dorne, R., Hao, J.K.: A New Genetic Local Search Algorithm for Graph Coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 745–754. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communications 7(1), 39–52 (1994)Google Scholar
  14. 14.
    Aamodt, A.: Towards robust expert systems that learn from experience - an architectural framework. In: The 3rd Workshop on European Knowledge Acquisition for Knowledge-Based Systems, Paris, pp. 311–326 (July 1989)Google Scholar
  15. 15.
    Sadeghi, Z., Teshnehlab, M.: Ant colony clustering by expert ants. In: Proceedings of International Workshop on Data Mining and Artificial Intelligence (DMAI 2008), Khulna, Bangladesh, December 24-27, pp. 94–100 (2008)Google Scholar
  16. 16.
    Conforth, M., Meng, Y.: Reinforcement Learning for Neural Networks using Swarm. In: 2008 IEEE Swarm Intelligence Symposium, St. Louis, MO, USA, September 21-23, pp. 1–7 (2008)Google Scholar
  17. 17.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999) ISBN: 9780780334946Google Scholar
  18. 18.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  19. 19.
    Kobti, Z., Reynolds, R.G., Kohler, T.: A multi-agent simulation using cultural algorithms: the effect of culture on the resilience of social systems. In: Proceedings of the IEEE Conference on Evolutionary Computation, CEC 2003, December 8-12, vol. 3, pp. 1988–1995 (2003)Google Scholar
  20. 20.
    Kobti, Z., Rahaman, S., Snowdon, A.W., Kent, R.D.: A Reputation Model Framework for Artificial Societies: A Case Study in Child Vehicle Safety Simulation. In: Bergler, S. (ed.) Canadian AI. LNCS (LNAI), vol. 5032, pp. 185–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Kobti, Z., Rahaman, S., Snowdon, A.W., Dunlop, T., Kent, R.D.: A cultural algorithm to guide driver learning in applying child vehicle safety restraint. In: IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada, July 16-21, pp. 1111–1118 (2006)Google Scholar
  22. 22.
    Ross, W.D. (ed.): Aristotle, Nicomachean Ethics. Oxford University Press (1924)Google Scholar
  23. 23.
    Kant, I.: Groundwork of the Metaphysic of Morals. In: Gregor, M.J. (trans.) Practical Philosophy. Cambridge University Press (1996)Google Scholar
  24. 24.
    Bentham, J.: Introduction to he Principles of Morals and Legistlation. In: Harrison, W. (ed.). Hafner Press (1948)Google Scholar
  25. 25.
    Mill, J.S.: Utilitarianism. In: Sher, G. (ed.) Hackett (1979)Google Scholar
  26. 26.
    Ross, W.D.: The Right and the Good. Oxford University Press (1930)Google Scholar
  27. 27.
    Andrews, C.M.: Complexity-based EthicsGoogle Scholar
  28. 28.
    Di Paolo, E.A.: Artificial Life and Historical Processes. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 649–658. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Andres, C., Lewis, E.J.E.: ibid (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Kavitha
    • 1
  • S. Sandhya Snehasree
    • 1
  1. 1.Anil Neerukonda Institute of Technology and SciencesVisakhapatnam Dist.India

Personalised recommendations