An Automatic Legal Document Summarization and Search Using Hybrid System

  • Selvani Deepthi Kavila
  • Vijayasanthi Puli
  • G. S. V. Prasada Raju
  • Rajesh Bandaru
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)


In this paper we propose a hybrid system for automatic text summarization and automatic search task related to legal documents in the legal domain. Manual summarization requires much human effort and time. For this reason automatic text summarization is introduced which saves the legal expert time. The summarization task involves the identification of rhetorical roles presenting the sentences of a legal judgement document. The search task involves the identification of related past cases as per the given legal query. For these two tasks we have introduced hybrid system which is the combination of different techniques. The techniques involved in our hybrid system are keyword or key phrase matching technique and case based technique. We have implemented and tested and required results are produced.


Automatic Text Summarization Automatic Search Legal domain Keyword/phrase matching Case based technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farzindar, A., Lapalme, G.: Legal Text Summarization by Exploration of the Thematic Structures and Argumentative Roles (2004)Google Scholar
  2. 2.
    Bridge, D., Goker, M.H., Mcginty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)CrossRefGoogle Scholar
  3. 3.
    Wang, D., Li, T., Zhu, S., Gong, Y.: iHelp: An Intelligent Online Helpdesk System. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics (April 11, 2010)Google Scholar
  4. 4.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing method for nearest neighbour search. ACM Trans. Database Syst. 30(2), 364–397 (2005)CrossRefGoogle Scholar
  5. 5.
    Doyle, M., Cunningham, P.: A Dynamic Approach to Reducing Dialog in On-Line Decision Guides. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 49–60. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Mirzadeh, N., Ricci, F., Bansal, M.: Feature selection methods for conversational recommender systems. In: Proc. IEEE Int. Conf. e-Technol., e-Commerce e-Service, pp. 772–777 (2005)Google Scholar
  7. 7.
    Al-Hashemi, R.: Text Summarization Extraction System (TSES) Using Extracted Keywords. International Arab Journal of e-Technology 1(4) (June 2010)Google Scholar
  8. 8.
    Gholamrezazadeh, S., Salehi, M.A., Gholamzadeh, B.: A Comprehensive Survey on Text Summarization Systems. 978-1-4244-4946-0/09/$25.00 ©2009 IEEEGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Selvani Deepthi Kavila
    • 1
  • Vijayasanthi Puli
    • 1
  • G. S. V. Prasada Raju
    • 2
  • Rajesh Bandaru
    • 3
  1. 1.Department of Computer Science and EngineeringAnil Neerukonda Institute of Technology and SciencesVisakhapatnamIndia
  2. 2.Department of Computer Science, SDEAndhra UniveristyVisakhapatnamIndia
  3. 3.Department of Computer Science and EngineeringVITAM Engineering CollegeVisakhapatnamIndia

Personalised recommendations