Advertisement

An Effective Analysis of Server Log for Website Evaluation

  • Saritha Vemulapalli
  • Shashi M.
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

The Web constitutes huge, distributed and dynamically growing hyper medium, supporting access to data and services. In corporate business due to strong market competition more organizations rely on web to conduct business, website design & management becoming critical issue in web based applications. One of the vital goals of organizations is having attractive & well organized website. Website managers are responsible to take decisions about contents & hyperlink structure in order to capture the attention of visitor’s. Visitor’s interactions with website are stored in server logs and serves as huge electronic survey of website. In this paper server logs are analyzed using the web log analyzer program to get general statistics about hit’s, visitor’s, visit’s, browsers, operating systems, referring sites, spider URL’s, eminent & delicate pages and statistics about error pages, broken links. Obtained results can be useful to website manager to evaluate website, helps in improving the effectiveness of website.

Keywords

Data mining Web log analysis Web usage mining Web usage analysis preprocessing Website design & management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooley, R., Mobasher, B., Srivastava, J.: Web mining: information and pattern discovery on the World Wide Web. In: International Conference on Tools with Artificial Intelligence, pp. 558–567. IEEE, Newport Beach (1997)Google Scholar
  2. 2.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Journal of Knowledge & Information System, 1–27 (1999)Google Scholar
  3. 3.
    Cooley, R., Mobasher, B., Srivastava, J.: Grouping Web page references into transactions for mining World Wide Web browsing patterns. In: Knowledge and Data Engineering Workshop, pp. 2–9. IEEE, Newport Beach (1997)Google Scholar
  4. 4.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: Discovery and applications of usage patterns from Web data. SIGKDD Explorations 1, 12–23 (2000)CrossRefGoogle Scholar
  5. 5.
    Masseglia, F., Poncelet, P., Teisseire, M.: Using data mining techniques on Web access logs to dynamically improve Hypertext structure. ACM SigWeb Letters 8(3), 13–19 (1999)CrossRefGoogle Scholar
  6. 6.
    Pirolli, P., Pitkow, J., Rao, R.: Silk from a sow’s ear: Extracting usable structure from the web. In: Human Factors in Computing Systems: Common Ground, CHI 1996, Vancouver, Canada, New York (1996)Google Scholar
  7. 7.
    Bosnjak, S., Maric, M., Bosnjak, Z.: The Role of Web Usage Mining in Web Applications. Evaluation Management Information Systems 5(1), 031–036 (2010)Google Scholar
  8. 8.
    Pabarskaite, Z., Raudys, A.: A process of knowledge discovery from web log data: Systematization and critical review. Journal of Intelligent Informatin Systems 28(1), 79–104 (2007)CrossRefGoogle Scholar
  9. 9.
    Configuration file of W3C httpd (1995), http://www.w3.org/Daemon/User/Config/
  10. 10.
    W3C Extended Log File Format (1996), http://www.w3.org/TR/WD-logfile.html
  11. 11.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. J. Knowledge and Information Systems 1(1), 5–32 (1999)CrossRefGoogle Scholar
  12. 12.
    Hypertext Transfer Protocol Overview (1995), http://www.w3.org/Protocol/rfc2616/rfc216sec1.html
  13. 13.
    Frieder, O., Grossman, D.A.: Information Retrieval: Algorithms and Heuristics, 2nd edn. The Information Retrieval Series (2004)Google Scholar
  14. 14.
    Vemulapalli, S., Shashi, M.: Design and Implementation of an Effective Web Server Log Preprocessing System. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) InConINDIA 2012. AISC, vol. 132, pp. 897–905. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Spiliopoulou, M.: Managing Interesting Rules in Sequence Mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 554–560. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringC M R Institute of TechnologyBangaloreIndia
  2. 2.Department of CS & SEAndhra University College of Engg (A)VizagIndia

Personalised recommendations