Tight Lower Bounds on Envy-Free Makespan Approximation

  • Amos Fiat
  • Ariel Levavi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)


In this work we give a tight lower bound on makespan approximation for envy-free allocation mechanisms dedicated to scheduling tasks on unrelated machines. Specifically, we show that no mechanism exists that can guarantee an envy-free allocation of jobs to m machines with a makespan less than a factor of O(logm) of the minimal makespan. Combined with previous results, this paper definitively proves that the optimal algorithm for obtaining a minimal makespan for any envy-free division can at best approximate the makespan to a factor of O(logm).


makespan approximation locally-efficient envy-freeness mechanism design scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbanel, J.B.: The Geometry of Efficient Fair Division. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  2. 2.
    Brams, S.J., Taylor, A.D.: Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge University Press, Cambridge (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Brams, S.J., Taylor, A.D.: The Win-Win Solution: Guaranteeing Fair Shares to Everybody. Norton Paperback, New York (2000)Google Scholar
  4. 4.
    Cohen, E., Feldman, M., Fiat, A., Kaplan, H., Olonetsky, S.: Envy-Free Makespan Approximation. SIAM J. Comput. 41, 12–25 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dubins, L., Spanier, E.: How to Cut a Cake Fairly. American Mathematical Monthly 68, 1–17 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Foley, D.: Resource Allocation and the Public Sector. Yale Economic Essays 7, 45–98 (1967)Google Scholar
  7. 7.
    Haake, C.J., Raith, M.G., Su, F.E.: Bidding for Envy-Freeness: A Procedural Approach to n-Player Fair-Division Problems. Social Choice and Welfare 19, 723–749 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hartline, J., Leong, S., Mualem, H., Schapira, M., Zohar, A.: Multi-Dimensional Envy-Free Scheduling Mechanisms. Technical Report 1144. The Hebrew University (2008)Google Scholar
  9. 9.
    Hougaard, J.L.: An Introduction to Allocation Rules. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation Algorithms for Scheduling Unrelated Parallel Machines. Mathematical Programming 46, 259–271 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Meertens, M.: Games, Economies and Fair Allocations: A study in the field of Game Theory. VDM Verlag, Saarbrücken (2009)Google Scholar
  12. 12.
    Moulin, H.: Fair Division and Collective Welfare. MIT, Cambridge (2003)Google Scholar
  13. 13.
    Steinhaus, H.: The Problem of Fair Division. Econometrica 16, 101–104 (1948)Google Scholar
  14. 14.
    Steinhaus, H.: Mathematical Snapshots. Oxford University Press, New York (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amos Fiat
    • 1
  • Ariel Levavi
    • 2
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.School of Computer Science and EngineeringUC San DiegoSan DiegoUSA

Personalised recommendations