Advertisement

Convergence of Best-Response Dynamics in Games with Conflicting Congestion Effects

  • Michal Feldman
  • Tami Tamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)

Abstract

We study the model of resource allocation games with conflicting congestion effects introduced by Feldman and Tamir (2012). In this model, an agent’s cost consists of its resource’s load (which increases with congestion) and its share in the resource’s activation cost (which decreases with congestion). The current work studies the convergence rate of best-response dynamics (BRD) in the case of homogeneous agents. Even within this simple setting, interesting phenomena arise. We show that, in contrast to standard congestion games with identical jobs and resources, the convergence rate of BRD under conflicting congestion effects might be super-linear in the number of jobs. Nevertheless, a specific form of BRD is proposed, which is guaranteed to converge in linear time.

Keywords

Nash Equilibrium Convergence Rate Convergence Time Congestion Game Potential Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. In: FOCS 2006, pp. 613–622 (2006)Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS 2004, pp. 295–304 (2004)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: ACMEC 2008, pp. 264–273 (2008)Google Scholar
  4. 4.
    Chen, B., Gürel, S.: Efficiency analysis of load balancing games with and without activation costs. Journal of Scheduling 15(2) (2011)Google Scholar
  5. 5.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. In: SODA 2007, pp. 169–178 (2007)Google Scholar
  6. 6.
    Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. Games and Economic Behavior 67(1) (2009)Google Scholar
  7. 7.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: STOC 2004, pp. 604–612 (2004)Google Scholar
  9. 9.
    Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Operations Research 60(3), 529–540 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Full version, http://www.faculty.idc.ac.il/tami/Papers/BRDcoco.pdf
  11. 11.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–519. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Fotakis, D.: Congestion games with linearly independent paths: convergence time and price of anarchy. Theory Comput. Syst. 47(1), 113–136 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hoefer, M., Skopalik, A.: Stability and Convergence in Selfish Scheduling with Altruistic Agents. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 616–622. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Ieong, S., Mcgrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and Compact: A simple class of congestion games. In: AAAI 2005, pp. 489–494 (2005)Google Scholar
  15. 15.
    Johari, R., Kumar, S.: Congestible services and network effects. In: EC 2010, pp. 93–94 (2010)Google Scholar
  16. 16.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science Review 3(2), 65–69 (2009)CrossRefGoogle Scholar
  17. 17.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.: Algorithms, games, and the Internet. In: STOC 2001, pp. 749–753 (2001)Google Scholar
  19. 19.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Syrgkanis, V.: The Complexity of Equilibria in Cost Sharing Games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michal Feldman
    • 1
    • 2
  • Tami Tamir
    • 3
  1. 1.Hebrew University of JerusalemIsrael
  2. 2.Harvard UniversityUSA
  3. 3.School of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael

Personalised recommendations