Mechanism Design for a Risk Averse Seller

  • Anand Bhalgat
  • Tanmoy Chakraborty
  • Sanjeev Khanna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)


We develop efficient algorithms to construct approximately utility maximizing mechanisms for a risk averse seller in the presence of potentially risk-averse buyers in Bayesian single parameter and multi-parameter settings. We model risk aversion by concave utility function. Bayesian mechanism design has usually focused on revenue maximization in a risk-neutral environment, and while some work has regarded buyers’ risk aversion, very little of past work addresses the seller’s risk aversion.

We first consider the problem of designing a DSIC mechanism for a risk-averse seller in the case of multi-unit auctions. We give a poly-time computable pricing mechanism that is a (1 − 1/e − ε)-approximation to an optimal DSIC mechanism, for any ε > 0. Our result is based on a novel application of correlation gap bound, that involves splitting and merging of random variables to redistribute probability mass across buyers. This allows us to reduce our problem to that of checking feasibility of a small number of distinct configurations, each of which corresponds to a covering LP.

DSIC mechanisms are robust against buyers’ risk aversion, but may yield arbitrarily worse utility than the optimal BIC mechanisms, when buyers’ utility functions are assumed to be known. For a risk averse seller, we design a truthful-in-expectation mechanism whose utility is a small constant factor approximation to the utilty of the optimal BIC mechanism under two mild assumptions: (a) ex post individual rationality and (b) no positive transfers. Our mechanism simulates several rounds of sequential offers, that are computed using stochastic techniques developed for our DSIC mechanism. We believe that our techniques will be useful for other stochastic optimization problems with concave objective functions.


Utility Function Risk Aversion Expected Utility Revenue Maximization Split Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Price of correlations in stochastic optimization. Operations Research (2011); earlier version in SODA (2010)Google Scholar
  2. 2.
    Alaei, S.: Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. In: FOCS, pp. 512–521 (2011)Google Scholar
  3. 3.
    Alaei, S., Fu, H., Haghpanah, N., Hartline, J.D., Malekian, A.: Bayesian optimal auctions via multi- to single-agent reduction. In: ACM-EC (2012)Google Scholar
  4. 4.
    Alaei, S., Fu, H., Haghpanah, N., Hartline, J.D., Malekian, A.: The Simple Economics of Approximately Optimal Auctions (2012),
  5. 5.
    Arrow, K.J.: The theory of risk aversion. Aspects of the Theory of Risk Bearing (1965)Google Scholar
  6. 6.
    Bhalgat, A., Chakraborty, T., Khanna, S.: Mechanism Design for a Risk Averse Seller (2011),
  7. 7.
    Cai, Y., Daskalakis, C., Weinberg, M.: An algorithmic characterization of multi-dimensional mechanisms. In: STOC (2012)Google Scholar
  8. 8.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: STOC, pp. 311–320 (2010)Google Scholar
  9. 9.
    Eso, P., Futo, G.: Auction design with risk-averse seller. Econonomic Letters (1999)Google Scholar
  10. 10.
    Hon-Snir, S.: Utility equivalence in auctions. The B. E. Journal of Theoretical Economics 5(1) (2005)Google Scholar
  11. 11.
    Maskin, E.S., Riley, J.G.: Optimal auctions with risk-averse buyers. Econometrica (1984)Google Scholar
  12. 12.
    Matthews, S.: Selling to risk-averse buyers with unobservable tastes. Journal of Economic Theory 30, 370–400 (1983)zbMATHCrossRefGoogle Scholar
  13. 13.
    Matthews, S.: Comparing auctions for risk-averse buyers: A buyer’s point of view. Econometrica 55(3), 633–646 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32(1-2), 122–136 (1964)zbMATHCrossRefGoogle Scholar
  16. 16.
    Sundararajan, M., Yan, Q.: Robust mechanisms for risk-averse sellers. In: ACM Conference on Electronic Commerce, pp. 139–148 (2010)Google Scholar
  17. 17.
    Wilson, R.B.: Nonlinear Pricing. Oxford University Press (1997)Google Scholar
  18. 18.
    Yan, Q.: Mechanism design via correlation gap. In: SODA (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anand Bhalgat
    • 1
  • Tanmoy Chakraborty
    • 2
  • Sanjeev Khanna
    • 1
  1. 1.Dept. of Computer and Info. ScienceUniversity of PennsylvaniaUSA
  2. 2.Center for Research on Computation and SocietyHarvard UniversityUSA

Personalised recommendations