LP-Based Covering Games with Low Price of Anarchy

  • Georgios Piliouras
  • Tomáš Valla
  • László A. Végh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)

Abstract

We design a new class of vertex and set cover games, where the price of anarchy bounds match the best known constant factor approximation guarantees for the centralized optimization problems for linear and also for submodular costs. This is in contrast to all previously studied covering games, where the price of anarchy grows linearly with the size of the game. Both the game design and the price of anarchy results are based on structural properties of the linear programming relaxations. For linear costs we also exhibit simple best-response dynamics that converge to Nash equilibria in linear time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory of Computing 4(1), 77–109 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balcan, M., Krehbiel, S., Piliouras, G., Shin, J.: Minimally invasive mechanism design: Distributed covering with carefully chosen advice. To appear in the Proceedings of the 51st IEEE Conference on Decision and Control (CDC) (2012)Google Scholar
  3. 3.
    Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms 2(2), 198–203 (1981)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: Price of anarchy, universal worst-case examples, and tightness. In: Algorithms–ESA 2010, pp. 17–28 (2010)Google Scholar
  5. 5.
    Buchbinder, N., Lewin-Eytan, L., Naor, J(S.), Orda, A.: Non-cooperative Cost Sharing Games Via Subsidies. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 337–349. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cardinal, J., Hoefer, M.: Selfish Service Installation in Networks. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 174–185. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cardinal, J., Hoefer, M.: Non-cooperative facility location and covering games. Theoretical Computer Science 411(16-18), 1855–1876 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dasgupta, P., Hammond, P., Maskin, E.: The implementation of social choice rules: Some general results on incentive compatibility. The Review of Economic Studies 46(2), 185–216 (1979)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Mathematics of Operations Research, 751–766 (1999)Google Scholar
  10. 10.
    Devanur, N., Mihail, M., Vazirani, V.: Strategyproof cost-sharing mechanisms for set cover and facility location games. Decision Support Systems 39(1), 11–22 (2005)CrossRefGoogle Scholar
  11. 11.
    Escoffier, B., Gourvès, L., Monnot, J.: On the Impact of Local Taxes in a Set Cover Game. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 2–13. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Fang, Q., Kong, L.: Core Stability of Vertex Cover Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 482–490. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hall, N., Hochbaum, D.: A fast approximation algorithm for the multicovering problem. Discrete Applied Mathematics 15(1), 35–40 (1986)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Harks, T., Peis, B.: Resource Buying Games. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 563–574. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Hoefer, M.: Competitive cost sharing with economies of scale. Algorithmica 60(4), 743–765 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hurwicz, L.: On allocations attainable through Nash equilibria. Journal of Economic Theory 21(1), 140–165 (1979)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost-sharing schemes. ACM Transactions on Algorithms (TALG) 4(2), 24 (2008)MathSciNetGoogle Scholar
  18. 18.
    Immorlica, N., Markakis, E., Piliouras, G.: Coalition Formation and Price of Anarchy in Cournot Oligopolies. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 270–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: Foundations of Computer Science (FOCS), pp. 671–680. IEEE (2009)Google Scholar
  20. 20.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-ε. In: Computational Complexity, pp. 379–386. IEEE (2003)Google Scholar
  21. 21.
    Kleinberg, R., Ligett, K., Piliouras, G., Tardos, É.: Beyond the Nash equilibrium barrier. In: Symposium on Innovations in Computer Science, ICS (2011)Google Scholar
  22. 22.
    Kleinberg, R., Piliouras, G., Tardos, É.: Multiplicative updates outperform generic no-regret learning in congestion games. In: ACM Symposium on Theory of Computing, STOC (2009)Google Scholar
  23. 23.
    Kleinberg, R., Piliouras, G., Tardos, É.: Load balancing without regret in the bulletin board model. Distributed Computing 24(1), 21–29 (2011)MATHCrossRefGoogle Scholar
  24. 24.
    Koufogiannakis, C., Young, N.: Distributed and parallel algorithms for weighted vertex cover and other covering problems. In: ACM Symposium on Principles of Distributed Computing (PODC), pp. 171–179. ACM (2009)Google Scholar
  25. 25.
    Koufogiannakis, C., Young, N.E.: Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 634–652. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Li, X.-Y., Sun, Z., Wang, W.: Cost Sharing and Strategyproof Mechanisms for Set Cover Games. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 218–230. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Li, X., Sun, Z., Wang, W., Chu, X., Tang, S., Xu, P.: Mechanism design for set cover games with selfish element agents. Theoretical Computer Science 411(1), 174–187 (2010)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Ligett, K., Piliouras, G.: Beating the best Nash without regret. SIGecom Exchanges 10 (2011)Google Scholar
  30. 30.
    Maskin, E.: Nash equilibrium and welfare optimality. The Review of Economic Studies 66(1), 23–38 (1999)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Nadav, U., Piliouras, G.: No Regret Learning in Oligopolies: Cournot vs. Bertrand. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 300–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2(1), 65–67 (1973)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: ACM Symposium on Theory of Computing (STOC), pp. 513–522. ACM (2009)Google Scholar
  34. 34.
    Roughgarden, T., Schoppmann, F.: Local smoothness and the price of anarchy in atomic splittable congestion games. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 255–267 (2011)Google Scholar
  35. 35.
    Shah, D., Shin, J.: Dynamics in congestion games. In: ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 107 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georgios Piliouras
    • 1
  • Tomáš Valla
    • 2
  • László A. Végh
    • 3
  1. 1.School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Faculty of Information TechnologyCzech Technical UniversityPragueCzech Republic
  3. 3.Department of ManagementLondon School of EconomicsLondonUK

Personalised recommendations