Group Activity Selection Problem

  • Andreas Darmann
  • Edith Elkind
  • Sascha Kurz
  • Jérôme Lang
  • Joachim Schauer
  • Gerhard Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7695)

Abstract

We consider a setting where one has to organize one or several group activities for a set of agents. Each agent will participate in at most one activity, and her preferences over activities depend on the number of participants in the activity. The goal is to assign agents to activities based on their preferences. We put forward a general model for this setting, which is a natural generalization of anonymous hedonic games. We then focus on a special case of our model, where agents’ preferences are binary, i.e., each agent classifies all pairs of the form ”(activity, group size)” into ones that are acceptable and ones that are not. We formulate several solution concepts for this scenario, and study them from the computational point of view, providing hardness results for the general case as well as efficient algorithms for settings where agents’ preferences satisfy certain natural constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, H., Brandt, F., Harrenstein, P.: Pareto Optimality in Coalition Formation. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 93–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ballester, C.: NP-competeness in hedonic games. Games and Economic Behavior 49, 1–30 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition formation game. Social Choice and Welfare 18, 135–153 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures. Games and Economic Behavior 38, 201–230 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan and Claypool (2011)Google Scholar
  6. 6.
    Lenstra, J., Shmoys, D., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Lu, T., Boutilier, C.: Matching models for preference-sensitive group purchasing. In: ACM Conference on Electronic Commerce, pp. 723–740 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Darmann
    • 1
  • Edith Elkind
    • 2
  • Sascha Kurz
    • 3
  • Jérôme Lang
    • 4
  • Joachim Schauer
    • 1
  • Gerhard Woeginger
    • 5
  1. 1.Universität GrazAustria
  2. 2.Nanyang Technological UniversitySingapore
  3. 3.Universität BayreuthGermany
  4. 4.LAMSADE – Université Paris-DauphineFrance
  5. 5.TU EindhovenThe Netherlands

Personalised recommendations