Advertisement

Constructive Completeness for Modal Logic with Transitive Closure

  • Christian Doczkal
  • Gert Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7679)

Abstract

Classical modal logic with transitive closure appears as a subsystem of logics used for program verification. The logic can be axiomatized with a Hilbert system. In this paper we develop a constructive completeness proof for the axiomatization using Coq with Ssreflect. The proof is based on a novel analytic Gentzen system, which yields a certifying decision procedure that for a formula constructs either a derivation or a finite countermodel. Completeness of the axiomatization then follows by translating Gentzen derivations to Hilbert derivations. The main difficulty throughout the development is the treatment of transitive closure.

Keywords

modal logic completeness decision procedures constructive proofs Hilbert Systems Gentzen systems Coq Ssreflect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Inf. 20, 207–226 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical Big Operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Algebr. Program. 76(2), 216–225 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Doczkal, C., Smolka, G.: Coq formalization accompanying this paper, http://www.ps.uni-saarland.de/extras/cpp12/
  5. 5.
    Doczkal, C., Smolka, G.: Constructive Formalization of Hybrid Logic with Eventualities. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 5–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)zbMATHCrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. System Sci., 194–211 (1979)Google Scholar
  9. 9.
    Fitting, M.: Intuitionistic logic, model theory and forcing. Studies in Logic. North-Holland Pub. Co. (1969)Google Scholar
  10. 10.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel (1983)Google Scholar
  11. 11.
    Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Abrahams, P.W., Lipton, R.J., Bourne, S.R. (eds.) POPL, pp. 163–173. ACM Press (1980)Google Scholar
  12. 12.
    Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Research Report RR-6455, INRIA (2008), http://hal.inria.fr/inria-00258384/en/
  15. 15.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)Google Scholar
  16. 16.
    Kaminski, M., Schneider, T., Smolka, G.: Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 196–210. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Smullyan, R.M.: First-Order Logic. Springer (1968)Google Scholar
  18. 18.
    Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formalized Reasoning 2(1) (2009)Google Scholar
  19. 19.
    The Coq Development Team, http://coq.inria.fr
  20. 20.
    Troelstra, A.S., Schwichtenberg, H.: Basic proof theory, 2nd edn. Cambridge University Press, New York (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Doczkal
    • 1
  • Gert Smolka
    • 1
  1. 1.Saarland UniversitySaarbrückenGermany

Personalised recommendations