Compact Proof Certificates for Linear Logic

  • Kaustuv Chaudhuri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7679)


Linear logic is increasingly being used as a tool for communicating reasoning agents in domains such as authorization, access control, electronic voting, etc., where proof certificates represent evidence that must be verified by proof consumers as part of higher protocols. Controlling the size of these certificates is critical. We assume that the proof consumer is allowed to do some search to reconstruct details of the full proof that are omitted from the certificates. Because the decision problem for linear logic is unsolvable, the certificate must contain at least enough information to bound the search: we show how to use the sequence of contractions in the sequent proof for this bound. The remaining content of the proof, in particular the information about resource divisions, can then be omitted from the certificate. We also describe a technique for giving a variable amount of additional search hints to the proof consumer to limit its non-determinism.


Inference Rule Proof System Linear Logic Sequent Calculus Atomic Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and Computation 2(3), 297–347 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boespflug, M.: Conception d’un noyau de vérification de preuves pour le λΠ-calcul modulo. PhD thesis, Ecole Polytechnique (2011)Google Scholar
  3. 3.
    Brock-Nannestad, T., Schürmann, C.: Focused Natural Deduction. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 157–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon University, Technical report CMU-CS-06-162 (December 2006)Google Scholar
  5. 5.
    Chaudhuri, K.: Focusing Strategies in the Sequent Calculus of Synthetic Connectives. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 467–481. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, K.: Magically Constraining the Inverse Method Using Dynamic Polarity Assignment. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 202–216. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, K., Guenot, N., Straßburger, L.: The Focused Calculus of Structures. In: Computer Science Logic: 20th Annual Conference of the EACSL. Leibniz International Proceedings in Informatics (LIPIcs), pp. 159–173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (September 2011)Google Scholar
  8. 8.
    Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. J. of Automated Reasoning 40(2-3), 133–177 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. of Symbolic Logic 57(3), 795–807 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110(2), 327–365 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hodas, J., Watkins, K., Tamura, N., Kang, K.-S.: Efficient implementation of a linear logic programming language. In: Jaffar, J. (ed.) Proceedings of the 1998 Joint International Conference and Symposium on Logic Programming, pp. 145–159 (1998)Google Scholar
  12. 12.
    Laurent, O.: Etude de la polarisation en logique. PhD thesis, Université Aix-Marseille II (March 2002)Google Scholar
  13. 13.
    Laurent, O.: A proof of the focalization property of linear logic (May 2004) (unpublished note)Google Scholar
  14. 14.
    Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science 410(46), 4747–4768 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals Pure Applied Logic 56, 239–311 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Miller, D.: A Proposal for Broad Spectrum Proof Certificates. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 54–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Miller, D., Saurin, A.: From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–419. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Necula, G.C.: Proof-carrying code. In: Conference Record of the 24th Symposium on Principles of Programming Languages 1997, Paris, France, pp. 106–119. ACM Press (1997)Google Scholar
  19. 19.
    Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische Universität Dresden (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kaustuv Chaudhuri
    • 1
  1. 1.INRIAFrance

Personalised recommendations