Skip to main content

Control of Auxin Transport by Reactive Oxygen and Nitrogen Species

  • Chapter
  • First Online:
Polar Auxin Transport

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 17))

  • 2110 Accesses

Abstract

Auxin transport is a central process in plant growth and development and as a result is highly regulated. The amount and direction of auxin transport is defined by a set of auxin influx and efflux carriers with precise localization that lead to long-distance polar auxin transport. These auxin transport proteins are regulated by transcriptional and posttranslational mechanisms and through protein-targeting machinery that directs them to the appropriate plasma membrane location. A variety of signals initiate regulatory changes in the abundance, activity, or localization of these proteins, with plant hormones, light, and other environmental signaling implicated in this process. Recent evidence indicates that changing levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may also fine-tune the activity or synthesis of these proteins. This insight has been obtained by using mutants or treatments that alter the levels of ROS or RNS and demonstration of changing auxin transport and abundance of transport proteins. The molecular mechanisms by which ROS and RNS lead to changes in auxin transport are not yet clear but likely include changes in protein synthesis and abundance. This chapter briefly introduces the key proteins and antioxidant molecules that control the levels of ROS and RNS and focuses on the evidence linking these changes to altered auxin transport.

María Fernández-Marcos and Luis Sanz authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L (2011) Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 11:1606–1618

    Article  PubMed  CAS  Google Scholar 

  • Astier J, Besson-Bard A, Wawer I, Parent C, Rasul S, Jeandroz S, Dat J, Wendehenne D (2011) Nitric oxide signalling in plants: cross-talk with Ca2+ protein kinases and reactive oxygen species. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era. Annual plant review, vol 42. Wiley, Oxford

    Google Scholar 

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    Article  PubMed  CAS  Google Scholar 

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    Article  PubMed  CAS  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008a) Nitric oxide in plants: production and cross-talk with Ca2+ signalling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008b) New insights into nitric oxide signalling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883

    Article  PubMed  CAS  Google Scholar 

  • Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612

    Article  PubMed  CAS  Google Scholar 

  • Brightman A, Barr R, Crane F, Morre D (1988) Auxin-stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD (2011) Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 286:20398–20406

    Article  PubMed  CAS  Google Scholar 

  • Corpas F, Barroso J, Carreras A, Valderrama R (2007) Nitrosative stress in plants: a new approach to understand the role of NO in abiotic stress. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Plant cell monographs. Springer, Heidelberg, pp 187–205

    Chapter  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • De Tullio MC, Jiang K, Feldman LJ (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 48:328–336

    Article  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class 1 haemoglobins, nitrate and NO levels in hypoxic maize cell suspension cultures. Planta 219:66–72

    Article  PubMed  CAS  Google Scholar 

  • Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108:18506–18511

    Article  PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lorenzo O (2012) Nitric oxide: an emerging regulator of cell elongation during primary root growth. Plant Signal Behav 7:196–200

    Article  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Kiefer E, von Rad U, Ernst D, Foissner I, Durner J (2002) Nitric oxide burst and nitric oxide-dependent gene induction in plants. Plant Physiol Biochem 40:625–631

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Baron K, Manac'h-Little N, Stoimenova M, Hill RD (2005) The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564

    Article  PubMed  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D'Ippolito S, Casalongue CA (2010) Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H (2009) Protein tyrosine nitration - an update. Arch Biochem Biophys 484:117–121

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1

    Article  PubMed  CAS  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440

    Article  Google Scholar 

  • Jiang K, Zhu T, Diao Z, Huang H, Feldman LJ (2010) The maize root stem cell niche: a partnership between two sister cell populations. Planta 231:411–424

    Article  PubMed  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Kasprowicz A, Szuba A, Volkmann D, Baluska F, Wojtaszek P (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. J Exp Bot 60:1605–1617

    Article  PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kerk N, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932

    Article  PubMed  CAS  Google Scholar 

  • Kisu Y, Harada Y, Goto M, Esaka M (1997) Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin. Plant Cell Physiol 38:631–637

    Article  PubMed  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Muday GK (2009) Measurement of auxin transport in Arabidopsis thaliana. Nat Protocols 4:437–451

    Article  CAS  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-Like ABC transporter genes. Plant Cell 19:1838–1850

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BS, Muday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156:144–164

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL (2009) A signalling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150:114–124

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, Scheres B, Fu Y, Yang Z (2012) A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed  CAS  Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, Larocca N, Bruno L, Chiappetta A, Bitonti MB, Bonfante P, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  PubMed  CAS  Google Scholar 

  • Lombardo C, Graziano C, Polacco J, Lamattina L (2006) Nitric oxide is a positive regulator of root hair development. Plant Signal Behav 1:28–33

    Article  PubMed  Google Scholar 

  • Ludwikow A, Sadowski J (2008) Gene networks in plant ozone stress response and tolerance. J Integr Plant Biol 50:1256–1267

    Article  PubMed  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants – where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat G, Simontachi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    Article  PubMed  CAS  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MA (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  PubMed  CAS  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis non-symbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant Microbe Interact 16:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    Article  PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  PubMed  CAS  Google Scholar 

  • Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  PubMed  CAS  Google Scholar 

  • Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    Article  PubMed  CAS  Google Scholar 

  • Takahama U (1996) Effects of fusicoccin and indole-3-acetic acid on the levels of ascorbic acid and dehydroascorbic acid in the apoplast during elongation of epicotyl segments of Vigna angularis. Physiol Plant 98:731–736

    Article  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  PubMed  CAS  Google Scholar 

  • Tao LZ, Cheung AY, Wu HM (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    Article  PubMed  CAS  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signalling through S-nitrosylation of the Arabidopsis transport inhibitor response1 auxin receptor. Plant J 70:492–500

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Muhlenbock P, Van Breusegem F (2012) Stress homeostasis - the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  PubMed  CAS  Google Scholar 

  • Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  PubMed  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998

    Article  PubMed  CAS  Google Scholar 

  • Wu HM, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in the Lorenzo laboratory is financed by grants BIO2011-26940, CSD2007-00057 (TRANSPLANTA) from the Ministerio de Educación y Ciencia (Spain) and SA048A10-2 from Junta de Castilla y León. L.S. is supported by a Marie Curie European Reintegration Grant (FP7-PEOPLE-ERG-2008). We acknowledge grants from the National Science Foundation Arabidopsis 2010 program (IOB-0820717) and United States Department of Agriculture and Food Research Initiative (2009-65116-20436) to GKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K., Lorenzo, O. (2013). Control of Auxin Transport by Reactive Oxygen and Nitrogen Species. In: Chen, R., Baluška, F. (eds) Polar Auxin Transport. Signaling and Communication in Plants, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35299-7_5

Download citation

Publish with us

Policies and ethics