Skip to main content

Auxin Biosynthesis and Polar Auxin Transport During Tropisms in Maize Coleoptiles

  • Chapter
  • First Online:
  • 1949 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 17))

Abstract

In 1880, Charles Darwin and his son published a book, The Power of Movement in Plants, in which they described plant tropic behavior. This observation was the first suggestion of the importance of some influence transmitted from the tip to the basal growing parts. Following their suggestion, much research was conducted on plant tropic curvature, which indicated that the influence was a substance, auxin (indole-3-acetic acid; IAA), the first plant hormone to be identified. Tropic responses are generally explained by the Cholodny–Went hypothesis, that is, they occur via differential growth on the two sides of the elongating shoot that results from asymmetrical IAA distribution. In this mini-review, we summarize classic and modern research as the story of tip-specific IAA biosynthesis and its essential role on gravitropic and phototropic curvatures in maize (Zea mays) coleoptiles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    Article  CAS  PubMed  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  CAS  PubMed  Google Scholar 

  • Boutte Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Tocher RD, Wilson JF (1957) Phototropic auxin redistribution in corn coleoptiles. Science 126:210–212

    Article  CAS  PubMed  Google Scholar 

  • Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Cooney TP, Nonhebel HM (1989) The measurement and mass spectral identification of indole-3-pyruvate from tomato shoots. Biochem Biophys Res Commun 162:761–766

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • De Smet I, Jurges G (2007) Patterning the axis in plants – auxin in control. Curr Opin Genet Dev 17:337–343

    Article  PubMed  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Klein-Vehn J, Fan J, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Cohen JD, Bandurski RS (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65:415–421

    Article  CAS  PubMed  Google Scholar 

  • Forestan C, Meda S, Varotto S (2010) ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 152:1373–1390

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235

    Article  CAS  PubMed  Google Scholar 

  • Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R (2003) Blue light regulates an auxin-induced K+-channel gene in the maize coleoptiles. Proc Natl Acad Sci USA 100:11795–11800

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008a) The relationship between auxin transport and maize branching. Plant Physiol 147:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008b) Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA 105:15196–15201

    Article  CAS  PubMed  Google Scholar 

  • Glawischnig E, Tomas A, Eisenreich W, Spiteller P, Bacher A, Gierl A (2000) Auxin biosynthesis in maize kernels. Plant Physiol 123:1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith MH (1967a) Movement of pulses of labeled auxin in corn coleoptiles. Plant Physiol 42:258–263

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith MH (1967b) Separation of transit of auxin from uptake: average velocity and reversible inhibition by anaerobic conditions. Science 156:661–663

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115

    Article  CAS  PubMed  Google Scholar 

  • Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14:279–286

    Article  Google Scholar 

  • Iino M (1995) Gravitropism and phototropism of maize coleoptiles: evaluation of the Cholodny-Went theory through effects of auxin application and decapitation. Plant Cell Physiol 36:361–367

    CAS  Google Scholar 

  • Iino M, Briggs WR (1984) Growth distribution during first positive phototropic curvature of maize coleoptiles. Plant Cell Environ 7:97–104

    Article  Google Scholar 

  • Iino M, Carr DJ (1982) Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indole-α-pyrone fluorescence method. Plant Physiol 69:950–956

    Article  CAS  PubMed  Google Scholar 

  • Inada S, Ohgishi M, Mayama T, Okada K, Sakai T (2004) RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16:887–896

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    Article  CAS  PubMed  Google Scholar 

  • Knöller AS, Blakeslee JJ, Richarks EL, Peer WA, Murphy AS (2010) Branchytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61:3689–3696

    Article  PubMed  Google Scholar 

  • Koshiba T (1993) Cytosolic ascorbate peroxidase in seedlings and leaves of maize (Zea mays). Plant Cell Physiol 34:713–721

    CAS  Google Scholar 

  • Koshiba T, Matsuyama H (1993) An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol 102:1319–1324

    CAS  PubMed  Google Scholar 

  • Koshiba T, Mito N, Miyakado M (1993) L- and D-Tryptophan aminotransferases from maize coleoptiles. J Plant Res 106:25–29

    Article  CAS  Google Scholar 

  • Koshiba T, Kamiya Y, Iino M (1995) Biosynthesis of indole-3-acetic acid from L-tryptophan in coleoptile tips of maize (Zea mays). Plant Cell Physiol 36:1503–1510

    CAS  Google Scholar 

  • Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from maize coleoptiles. Plant Physiol 110:781–789

    CAS  PubMed  Google Scholar 

  • Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2007) Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. J Exp Bot 58:4225–4233

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3- and PGP-like genes are exclusively expressed in apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62:3459–3466

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Nishimura T, Koshiba T (2005) Vigorous synthesis of indole-3-acetic acid in the apical very tip leads to a constant basipetal flow of the hormone in maize coleoptiles. Plant Sci 168:467–473

    Article  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  CAS  PubMed  Google Scholar 

  • Nick P, Schafer E (1988) Interaction of gravi- and phototropic stimulation in the response of maize (Zea mays L.) coleoptiles. Planta 173:213–220

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Mori Y, Furukawa T, Kadota A, Koshiba T (2006) Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles. Planta 224:1427–1435

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Nakano H, Hayashi K, Niwa C, Koshiba T (2009) Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways. Plant Cell Physiol 50:1874–1885

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Toyooka K, Sato M, Matsumoto S, Lucas MM, Strnad M, Baluska F, Koshiba T (2011) Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal Behav 6:2013–2022

    Article  CAS  PubMed  Google Scholar 

  • Park WJ, Kriechbaumer V, Moller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003) The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol 133:794–802

    Article  CAS  PubMed  Google Scholar 

  • Parker KE, Briggs WR (1990a) Transport of indole-3-acetic acid in intact corn coleoptiles. Plant Physiol 94:417–423

    Article  CAS  PubMed  Google Scholar 

  • Parker KE, Briggs WR (1990b) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94:1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    Article  CAS  PubMed  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    Article  CAS  PubMed  Google Scholar 

  • Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transporter for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826

    Article  PubMed  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F (2006) Auxin Immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 3:122–133

    Article  Google Scholar 

  • Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T (1998) Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol 39:433–442

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3- acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106:5430–5435

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed  Google Scholar 

  • Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107

    Article  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154: 1957–1965

    Article  CAS  PubMed  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSOS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  Google Scholar 

  • Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254:998–1000

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nishimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishimura, T., Koshiba, T. (2013). Auxin Biosynthesis and Polar Auxin Transport During Tropisms in Maize Coleoptiles. In: Chen, R., Baluška, F. (eds) Polar Auxin Transport. Signaling and Communication in Plants, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35299-7_11

Download citation

Publish with us

Policies and ethics