Skip to main content

A Dozen Tricks with Multitask Learning

  • Chapter
Neural Networks: Tricks of the Trade

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7700))

Abstract

Multitask Learning is an inductive transfer method that improves generalization accuracy on a main task by using the information contained in the training signals of other related tasks. It does this by learning the extra tasks in parallel with the main task while using a shared representation; what is learned for each task can help other tasks be learned better. This chapter describes a dozen opportunities for applying multitask learning in real problems. At the end of the chapter we also make several suggestions for how to get the most our of multitask learning on real-world problems.

Previously published in: Orr, G.B. and Müller, K.-R. (Eds.): LNCS 1524, ISBN 978-3-540-65311-0 (1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Mostafa, Y.S.: Learning from Hints in Neural Networks. Journal of Complexity 6(2), 192–198 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu-Mostafa, Y.S.: Hints. Neural Computation 7, 639–671 (1995)

    Article  Google Scholar 

  3. Baxter, J.: Learning Internal Representations. In: COLT 1995, Santa Cruz, CA (1995)

    Google Scholar 

  4. Baxter, J.: Learning Internal Representations. Ph.D. Thesis, The Flinders Univeristy of South Australia (December 1994)

    Google Scholar 

  5. Caruana, R.: Multitask Learning: A Knowledge-Based Source of Inductive Bias. In: Proceedings of the 10th International Conference on Machine Learning, ML 1993, University of Massachusetts, Amherst, pp. 41–48 (1993)

    Google Scholar 

  6. Caruana, R.: Multitask Connectionist Learning. In: Proceedings of the 1993 Connectionist Models Summer School, pp. 372–379 (1994)

    Google Scholar 

  7. Caruana, R., Freitag, D.: Greedy Attribute Selection. In: ICML 1994, Rutgers, NJ, pp. 28–36 (1994)

    Google Scholar 

  8. Caruana, R.: Learning Many Related Tasks at the Same Time with Backpropagation. In: NIPS 1994, pp. 656–664 (1995)

    Google Scholar 

  9. Caruana, R., Baluja, S., Mitchell, T.: Using the Future to “Sort Out” the Present: Rankprop and Multitask Learning for Medical Risk Prediction. In: Proceedings of Advances in Neural Information Processing Systems, NIPS 1995, pp. 959–965 (1996)

    Google Scholar 

  10. Caruana, R., de Sa, V.R.: Promoting Poor Features to Supervisors: Some Inputs Work Better As Outputs. In: NIPS 1996 (1997)

    Google Scholar 

  11. Caruana, R.: Multitask Learning. Machine Learning 28, 41–75 (1997)

    Article  Google Scholar 

  12. Caruana, R.: Multitask Learning. Ph.D. thesis, Carnegie Mellon University, CMU-CS-97-203 (1997)

    Google Scholar 

  13. Caruana, R., O’Sullivan, J.: Multitask Pattern Recognition for Autonomous Robots. In: The Proceedings of the IEEE Intelligent Robots and Systems Conference (IROS 1998), Victoria (1998) (to appear)

    Google Scholar 

  14. Caruana, R., de Sa, V.R.: Using Feature Selection to Find Inputs that Work Better as Outputs. In: The Proceedings of the International Conference on Neural Nets (ICANN 1998), Sweden (1998) (to appear)

    Google Scholar 

  15. Cooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., Glymour, C., Gordon, G., Hanusa, B.H., Janosky, J.E., Meek, C., Mitchell, T., Richardson, T., Spirtes, P.: An Evaluation of Machine Learning Methods for Predicting Pneumonia Mortality. Artificial Intelligence in Medicine 9, 107–138 (1997)

    Article  Google Scholar 

  16. Craven, M., Shavlik, J.: Using Sampling and Queries to Extract Rules from Trained Neural Networks. In: Proceedings of the 11th International Conference on Machine Learning, ML 1994, Rutgers University, New Jersey, pp. 37–45 (1994)

    Google Scholar 

  17. Davis, I., Stentz, A.: Sensor Fusion for Autonomous Outdoor Navigation Using Neural Networks. In: Proceedings of IEEE’s Intelligent Robots and Systems Conference (1995)

    Google Scholar 

  18. Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  19. Fine, M.J., Singer, D., Hanusa, B.H., Lave, J., Kapoor, W.: Validation of a Pneumonia Prognostic Index Using the MedisGroups Comparative Hospital Database. American Journal of Medicine (1993)

    Google Scholar 

  20. Ghosn, J., Bengio, Y.: Multi-Task Learning for Stock Selection. In: NIPS 1996 (1997)

    Google Scholar 

  21. Heskes, T.: Solving a Huge Number of Similar Tasks: A Combination of Multitask Learning and a Hierarchical Bayesian Approach. In: Proceedings of the 15th International Conference on Machine Learning, Madison, Wisconsin, pp. 233–241 (1998)

    Google Scholar 

  22. Holmstrom, L., Koistinen, P.: Using Additive Noise in Back-propagation Training. IEEE Transactions on Neural Networks 3(1), 24–38 (1992)

    Article  Google Scholar 

  23. John, G., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: ICML 1994, Rutgers, NJ, pp. 121–129 (1994)

    Google Scholar 

  24. Koller, D., Sahami, M.: Towards Optimal Feature Selection. In: ICML 1996, Bari, Italy, pp. 284–292 (1996)

    Google Scholar 

  25. Le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackal, L.D.: Backpropagation Applied to Handwritten Zip-Code Recognition. Neural Computation 1, 541–551 (1989)

    Article  Google Scholar 

  26. Le Cun, Y.: Private communication (1997)

    Google Scholar 

  27. Munro, P.W., Parmanto, B.: Competition Among Networks Improves Committee Performance. In: Proceedings of Advances in Neural Information Processing Systems, NIPS 1996, vol. 9 (1997) (to appear)

    Google Scholar 

  28. Pomerleau, D.A.: Neural Network Perception for Mobile Robot Guidance. Doctoral Thesis, Carnegie Mellon University: CMU-CS-92-115 (1992)

    Google Scholar 

  29. Pratt, L.Y., Mostow, J., Kamm, C.A.: Direct Transfer of Learned Information Among Neural Networks. In: Proceedings of AAAI 1991 (1991)

    Google Scholar 

  30. Sejnowski, T.J., Rosenberg, C.R.: NETtalk: A Parallel Network that Learns to Read Aloud. John Hopkins: JHU/EECS-86/01 (1986)

    Google Scholar 

  31. Sill, J., Abu-Mostafa, Y.: Monotonicity Hints. In: Proceedings of Neural Information Processing Systems, NIPS 1996, vol. 9 (1997) (to appear)

    Google Scholar 

  32. Suddarth, S.C., Holden, A.D.C.: Symbolic-neural Systems and the Use of Hints for Developing Complex Systems. International Journal of Man-Machine Studies 35(3), 291–311 (1991)

    Article  Google Scholar 

  33. Suddarth, S.C., Kergosien, Y.L.: Rule-injection Hints as a Means of Improving Network Performance and Learning Time. In: Proceedings of EURASIP Workshop on Neural Nets, pp. 120–129 (1990)

    Google Scholar 

  34. Thrun, S.: Explanation-Based Neural Network Learning: A Lifelong Learning Approach. Kluwer Academic Publisher (1996)

    Google Scholar 

  35. Thrun, S., Pratt, L. (eds.): Machine Learning. Second Special Issue on Inductive Transfer (1997)

    Google Scholar 

  36. Thrun, S., Pratt, L. (eds.): Learning to Learn. Kluwer (1997)

    Google Scholar 

  37. Valdes-Perez, R., Simon, H.A.: A Powerful Heuristic for the Discovery of Complex Patterned Behavior. In: Proceedings of the 11th International Conference on Machine Learning, ML 1994, Rutgers University, New Jersey, pp. 326–334 (1994)

    Google Scholar 

  38. Weigend, A., Rumelhart, D., Huberman, B.: Generalization by Weight-Elimination with Application to Forecasting. In: Proceedings of Advances in Neural Information Processing Systems, NIPS 1990, vol. 3, pp. 875–882 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caruana, R. (2012). A Dozen Tricks with Multitask Learning. In: Montavon, G., Orr, G.B., Müller, KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35289-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35288-1

  • Online ISBN: 978-3-642-35289-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics