Skip to main content

SPECT/CT in Neuroendrocrine Tumours

  • Chapter
  • First Online:
Clinical Applications of SPECT-CT

Abstract

Neuroendocrine neoplasms (NENs) are a very heterogenous group of neoplasms, defined as epithelial neoplasms with predominant neuroendocrine differentiation. Neuroendocrine cells are present in endocrine glands, but also diffuse distributed in all body tissues. These cells have the ability to produce various peptide hormones and bioactive amines [1, 2]. The products are stored in characteristic small membrane-bound granules (synaptic vesicles) inside the cells [2]. NENs can produce a great variety of clinical symptoms due to hormone hypersecretion, in addition to the typical carcinoid manifestation with diarrhoea and flush caused by serotonin hypersecretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gustafsson BI, Kidd M, Modlin IM. Neuroendocrine tumors of the diffuse neuroendocrine system. Curr Opin Oncol. 2008;20(1):1–12.

    Article  PubMed  Google Scholar 

  2. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  3. Koopmans KP, Neels ON, Kema IP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71(3):199–213.

    Article  PubMed  Google Scholar 

  4. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.

    Article  PubMed  Google Scholar 

  5. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):1–18, vii.

    Article  PubMed  Google Scholar 

  6. Kimura W, Kuroda A, Morioka Y. Clinical pathology of endocrine tumors of the pancreas. Analysis of autopsy cases. Dig Dis Sci. 1991;36(7):933–42.

    Article  PubMed  CAS  Google Scholar 

  7. Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med. 2011;52(9):1361–8.

    Article  PubMed  CAS  Google Scholar 

  8. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30(5):781–93.

    Article  PubMed  CAS  Google Scholar 

  9. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–46.

    Article  PubMed  CAS  Google Scholar 

  10. Hoyer D, Bell GI, Berelowitz M, et al. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci. 1995;16(3):86–8.

    Article  PubMed  CAS  Google Scholar 

  11. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–98.

    Article  PubMed  CAS  Google Scholar 

  12. Volante M, Bozzalla-Cassione F, Papotti M. Somatostatin receptors and their interest in diagnostic pathology. Endocr Pathol. 2004;15(4):275–91.

    Article  PubMed  CAS  Google Scholar 

  13. Patel YC. Molecular pharmacology of somatostatin receptor subtypes. J Endocrinol Invest. 1997;20(6):348–67.

    PubMed  CAS  Google Scholar 

  14. Bombardieri E, Coliva A, Maccauro M, et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2010;54(1):3–15.

    PubMed  CAS  Google Scholar 

  15. Massironi S, Sciola V, Peracchi M, Ciafardini C, Spampatti MP, Conte D. Neuroendocrine tumors of the gastro-entero-pancreatic system. World J Gastroenterol. 2008;14(35):5377–84.

    Article  PubMed  Google Scholar 

  16. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92.

    Article  PubMed  CAS  Google Scholar 

  17. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.

    Article  PubMed  Google Scholar 

  18. Rindi G, Arnold R, Bosman F. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman F, Carneiro F, Hruban R, Theise N, editors. WHO classification of tumours of the digestive system. 4th ed. World Health Orgn; 2010. p. 13.

    Google Scholar 

  19. Panzuto F, Boninsegna L, Fazio N, et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol. 2011;29(17):2372–7.

    Article  PubMed  Google Scholar 

  20. La Rosa S, Klersy C, Uccella S, et al. Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol. 2009;40(1):30–40.

    Article  PubMed  Google Scholar 

  21. von Herbay A, Sieg B, Schurmann G, Hofmann WJ, Betzler M, Otto HF. Proliferative activity of neuroendocrine tumours of the gastroenteropancreatic endocrine system: DNA flow cytometric and immunohistological investigations. Gut. 1991;32(8):949–53.

    Article  Google Scholar 

  22. La Rosa S, Sessa F, Capella C, et al. Prognostic criteria in nonfunctioning pancreatic endocrine tumours. Virchows Arch. 1996;429(6):323–33.

    PubMed  Google Scholar 

  23. Jann H, Roll S, Couvelard A, et al. Neuroendocrine tumors of midgut and hindgut origin: tumor-node-metastasis classification determines clinical outcome. Cancer. 2011;117(15):3332–41.

    Article  PubMed  Google Scholar 

  24. La Rosa S, Inzani F, Vanoli A, et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol. 2011;42(10):1373–84.

    Article  PubMed  Google Scholar 

  25. Pape UF, Jann H, Muller-Nordhorn J, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer. 2008;113(2):256–65.

    Article  PubMed  Google Scholar 

  26. Strosberg J, Nasir A, Coppola D, Wick M, Kvols L. Correlation between grade and prognosis in metastatic gastroenteropancreatic neuroendocrine tumors. Hum Pathol. 2009;40(9):1262–8.

    Article  PubMed  Google Scholar 

  27. Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol. 2011;35(6):853–60.

    Article  PubMed  Google Scholar 

  28. Pape UF, Perren A, Niederle B, et al. ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology. 2012;95(2):135–56.

    Article  PubMed  CAS  Google Scholar 

  29. Salazar R, Wiedenmann B, Rindi G, Ruszniewski P. ENETS 2011 consensus guidelines for the management of patients with digestive neuroendocrine tumors: an update. Neuroendocrinology. 2012;95(2):71–3.

    Article  PubMed  CAS  Google Scholar 

  30. Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  PubMed  CAS  Google Scholar 

  31. Caplin M, Sundin A, Nillson O, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: colorectal neuroendocrine neoplasms. Neuroendocrinology. 2012;95(2):88–97.

    Article  PubMed  CAS  Google Scholar 

  32. Jensen RT, Cadiot G, Brandi ML, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98–119.

    Article  PubMed  CAS  Google Scholar 

  33. Falconi M, Bartsch DK, Eriksson B, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology. 2012;95(2):120–34.

    Article  PubMed  CAS  Google Scholar 

  34. Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.

    Article  PubMed  CAS  Google Scholar 

  35. Kwekkeboom DJ, Krenning EP, Scheidhauer K, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with (111)In-pentetreotide. Neuroendocrinology. 2009;90(2):184–9.

    Article  PubMed  CAS  Google Scholar 

  36. Balon HR, Brown TL, Goldsmith SJ, et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 2011;39(4):317–24.

    Article  PubMed  Google Scholar 

  37. Bombardieri E, Ambrosini V, Aktolun C, et al. 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(7):1441–8.

    Article  PubMed  Google Scholar 

  38. Pepe G, Moncayo R, Bombardieri E, Chiti A. Somatostatin receptor SPECT. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S41–51.

    Article  PubMed  Google Scholar 

  39. Teunissen JJ, Kwekkeboom DJ, Valkema R, Krenning EP. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer. 2011;18 Suppl 1:S27–51.

    Article  PubMed  CAS  Google Scholar 

  40. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.

    Article  PubMed  Google Scholar 

  41. Mariani G, Bruselli L, Kuwert T, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.

    Article  PubMed  Google Scholar 

  42. van der Harst E, de Herder WW, Bruining HA, et al. [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86(2):685–93.

    Article  PubMed  Google Scholar 

  43. Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177(4):349–64.

    Article  PubMed  CAS  Google Scholar 

  44. Perri M, Erba P, Volterrani D, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52(4):323–33.

    PubMed  CAS  Google Scholar 

  45. Steffen IG, Mehl S, Heuck F, et al. Attenuation correction of somatostatin receptor SPECT by integrated low-dose CT: is there an impact on sensitivity? Clin Nucl Med. 2009;34(12):869–73.

    Article  PubMed  Google Scholar 

  46. Wong KK, Wynn EA, Myles J, Ackermann RJ, Frey KA, Avram AM. Comparison of single time-point [111-In] pentetreotide SPECT/CT with dual time-point imaging of neuroendocrine tumors. Clin Nucl Med. 2011;36(1):25–31.

    Article  PubMed  Google Scholar 

  47. 99mTc-Tektrotyd summary of product characteristics: Polatom Institute of Atomic Energy; 2007.

    Google Scholar 

  48. Decristoforo C, Mather SJ, Cholewinski W, Donnemiller E, Riccabona G, Moncayo R. 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med. 2000;27(9):1318–25.

    Article  PubMed  CAS  Google Scholar 

  49. Gabriel M, Decristoforo C, Donnemiller E, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med. 2003;44(5):708–16.

    PubMed  CAS  Google Scholar 

  50. Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B. EANM guidelines for ventilation/perfusion scintigraphy: part 2. Algorithms and clinical considerations for diagnosis of pulmonary emboli with V/P(SPECT) and MDCT. Eur J Nucl Med Mol Imaging. 2009;36(19629478):1528–38.

    Article  PubMed  CAS  Google Scholar 

  51. Czepczynski R, Parisella MG, Kosowicz J, et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2007;34(10):1635–45.

    Article  PubMed  CAS  Google Scholar 

  52. Lebtahi R, Le Cloirec J, Houzard C, et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med. 2002;43(7):889–95.

    PubMed  CAS  Google Scholar 

  53. Brandon D, Alazraki A, Halkar RK, Alazraki NP. The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging. Semin Oncol. 2011;38(1):87–108.

    Article  PubMed  Google Scholar 

  54. Papathanasiou ND, Rondogianni PE, Pianou NK, Karampina PA, Vlontzou EA, Datseris IE. 99mTc-depreotide in the evaluation of bone infection and inflammation. Nucl Med Commun. 2008;29(3):239–46.

    Article  PubMed  CAS  Google Scholar 

  55. Pallela VR, Thakur ML, Chakder S, Rattan S. 99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies. J Nucl Med. 1999;40(2):352–60.

    PubMed  CAS  Google Scholar 

  56. de Jong M, Breeman WA, Kwekkeboom DJ, Valkema R, Krenning EP. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res. 2009;42(7):873–80.

    Article  PubMed  Google Scholar 

  57. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28(9):1319–25.

    Article  PubMed  CAS  Google Scholar 

  58. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [(177)Lu-DOTA(0), Tyr(3)]octreotate and [(177)Lu-DOTA(0), Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33(11):1346–51.

    Article  PubMed  CAS  Google Scholar 

  59. Horsch D, Ezziddin S, Haug A, et al. Peptide receptor radionuclide therapy for neuroendocrine tumors in Germany: first results of a multi-institutional cancer registry. Recent Results Cancer Res. 2013;194:457–65.

    Article  PubMed  Google Scholar 

  60. van Vliet EI, Teunissen JJ, Kam BL, de Jong M, Krenning EP, Kwekkeboom DJ. Treatment of gastroenteropancreatic neuroendocrine tumors with peptide receptor radionuclide therapy. Neuroendocrinology. 2013;97(1):74–85.

    Article  PubMed  Google Scholar 

  61. Forrer F, Waldherr C, Maecke HR, Mueller-Brand J. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res. 2006;26(1B):703–7.

    PubMed  CAS  Google Scholar 

  62. Shcherbinin S, Piwowarska-Bilska H, Celler A, Birkenfeld B. Quantitative SPECT/CT reconstruction for (1)(7)(7)Lu and (1)(7)(7)Lu/(9)(0)Y targeted radionuclide therapies. Phys Med Biol. 2012;57(18):5733–47.

    Article  PubMed  CAS  Google Scholar 

  63. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53(17):4595–604.

    Article  PubMed  CAS  Google Scholar 

  64. Garkavij M, Nickel M, Sjogreen-Gleisner K, et al. 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116(4 Suppl):1084–92.

    Article  PubMed  CAS  Google Scholar 

  65. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging. 2011;11:56–66.

    Article  PubMed  Google Scholar 

  66. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40(2):105–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torjan Haslerud MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haslerud, T. (2014). SPECT/CT in Neuroendrocrine Tumours. In: Ahmadzadehfar, H., Biersack, HJ. (eds) Clinical Applications of SPECT-CT. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35283-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35283-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35282-9

  • Online ISBN: 978-3-642-35283-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics