Skip to main content

Heterogeneous Domain Decomposition Methods for Eddy Current Problems

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

  • 2033 Accesses

Summary

The usual setting of an eddy current problem distinguishes between a conducting region and an air region (non-conducting) surrounding the conductor. For the numerical approximation of this heterogeneous problem it is very natural to use iterative substructuring methods based on transmission conditions at the interface. We analyze the convergence of the Dirichlet-Neumann iterative method for two different formulations of the eddy current problem: the one that consider as main unknown the electric field and the one based on the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Alonso and A. Valli. An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp., 68(226):607–631, April 1999.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Alonso Rodríguez and A. Valli. Eddy Current Approximation of Maxwell Equations, volume 4 of Modeling, Simulation and Applications. Springer - Verlag, Italia, 2010.

    Google Scholar 

  3. A. Bossavit. Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. Academic Press, San Diego, 1998.

    Google Scholar 

  4. A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl., 276(2):845–867, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. P.W. Gross and P.R. Kotiuga. Finite element-based algorithms to make cuts for magnetic scalar potentials: topological constraints and computational complexity. In F.L. Teixeira, editor, Geometric Methods for Computational Electromagnetics, pages 207–245. EMW Publishing, Cambridge, MA, 2001.

    Google Scholar 

  6. R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica, pages 237–339, 2002.

    Google Scholar 

  7. J.C. Nédélec. Mixed finite elements in R 3. Numer. Math., 35:315–341, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Alonso Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez, A.A. (2013). Heterogeneous Domain Decomposition Methods for Eddy Current Problems. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_9

Download citation

Publish with us

Policies and ethics