Domain Decomposition Method for Stokes Problem with Tresca Friction

  • Mohamed Khaled Gdoura
  • Jonas Koko
  • Taoufik Sassi
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Abstract

Development of numerical methods for the solution of Stokes system with slip boundary conditions (Tresca friction conditions) is a challenging task whose difficulty lies in the nonlinear conditions. Such boundary conditions have to be taken into account in many situations arising in practice, in flow of polymers (see [10] and references therein).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. .
    Gdoura M. K. Ayadi M. and Sassi T. Mixed formulation for stokes problem with tresca friction. C. R. Acad. Sci. Paris, Ser. I 348:1069–1072, 2010.Google Scholar
  2. .
    Cahouet J. and Chabard J. P. Some fast 3-D solvers for the generalized Stokes problem. Internat. J. Numer. Methods Fluids, 8:269–295, 1988.Google Scholar
  3. .
    Fujita H. A coherent analysis of stokes flows under boundary conditions of friction type. J. Comput. and Appl. Math., 149:57–69, 2002.Google Scholar
  4. .
    Glowinski R. and Le Tallec P. Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. SIAM, 1989.Google Scholar
  5. .
    Hervet H. and Léger M. Folw with slip at the wall: from simple to complex fluids. C.R. Physique, 4:241–249, 2003.Google Scholar
  6. .
    Koko J. Convergence analysis of optimization-based domain decomposition methods for a bonded structure. Appl. Numer. Math., 58:69–87, 2008.Google Scholar
  7. .
    Koko J. and Sassi T. An uzawa domain decomposition method for stokes problem. Domain Decomposition Methods in Science and Engineering XIX, Lecture Notes in Computational Science and Engineering, 79:383–390, 2011.Google Scholar
  8. .
    Le Tallec P. and Sassi T. Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp., 64:1367–1396, 1995.Google Scholar
  9. .
    Quarteroni A. and Valli A. Domain Decomposition methods for partial differential equations. Oxford University Press, 1999.Google Scholar
  10. .
    Rao I. J. and Rajagopal K.R. The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica, 135:113–126, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohamed Khaled Gdoura
    • 1
    • 2
  • Jonas Koko
    • 3
  • Taoufik Sassi
    • 2
  1. 1.LAMSINUniversité Tunis El ManarTunisTUNISIA
  2. 2.LMNOUniversité de Caen – CNRS UMR 6139Caen CedexFRANCE
  3. 3.LIMOSUniversité Blaise-Pascal – CNRS UMR 6158Aubière cedexFRANCE

Personalised recommendations