Penalty Robin-Robin Domain Decomposition Schemes for Contact Problems of Nonlinear Elasticity

  • Ihor I. Prokopyshyn
  • Ivan I. Dyyak
  • Rostyslav M. Martynyak
  • Ivan A. Prokopyshyn
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Abstract

Many domain decomposition techniques for contact problems have been proposed on discrete level, particularly substructuring and FETI methods [1, 4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. .
    P. Avery and C. Farhat. The FETI family of domain decomposition methods for inequality-constrained quadratic programming: Application to contact problems with conforming and nonconforming interfaces. Comput. Methods Appl. Mech. Engrg., 198:1673–1683, 2009.MathSciNetCrossRefGoogle Scholar
  2. .
    G. Bayada, J. Sabil, and T. Sassi. A Neumann–Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Lett., 17(10):1153–1159, 2004.MathSciNetMATHCrossRefGoogle Scholar
  3. .
    J. Céa. Optimisation. Théorie et algorithmes. Dunod, Paris, 1971. [In French].Google Scholar
  4. .
    Z. Dostál, D. Horák, and D. Stefanica. A scalable FETI–DP algorithm with non-penetration mortar conditions on contact interface. Journal of Computational and Applied Mathematics, 231:577–591, 2009.MathSciNetMATHCrossRefGoogle Scholar
  5. .
    I.I. Dyyak and I.I. Prokopyshyn. Convergence of the Neumann parallel scheme of the domain decomposition method for problems of frictionless contact between several elastic bodies. Journal of Mathematical Sciences, 171(4):516–533, 2010a.MathSciNetCrossRefGoogle Scholar
  6. .
    I.I. Dyyak and I.I. Prokopyshyn. Domain decomposition schemes for frictionless multibody contact problems of elasticity. In G. Kreiss et al., editor, Numerical Mathematics and Advanced Applications 2009, pages 297–305. Springer Berlin Heidelberg, 2010b.Google Scholar
  7. .
    R. Glowinski, J.L. Lions, and R. Trémolières. Analyse numérique des inéquations variationnelles. Dunod, Paris, 1976. [In French].MATHGoogle Scholar
  8. .
    A.A. Ilyushin. Plasticity. Gostekhizdat, Moscow, 1948. [In Russian].Google Scholar
  9. .
    N. Kikuchi and J.T. Oden. Contact problem in elasticity: A study of variational inequalities and finite element methods. SIAM, 1988.Google Scholar
  10. .
    J. Koko. An optimization-bazed domain decomposition method for a two-body contact problem. Num. Func. Anal. Optim., 24(5–6):586–605, 2003.MathSciNetGoogle Scholar
  11. .
    R. Krause and B. Wohlmuth. A Dirichlet–Neumann type algorithm for contact problems with friction. Comput. Visual. Sci., 5(3):139–148, 2002.MathSciNetMATHCrossRefGoogle Scholar
  12. .
    A.S. Kravchuk. Formulation of the problem of contact between several deformable bodies as a nonlinear programming problem. Journal of Applied Mathematics and Mechanics, 42(3):489–498, 1978.MathSciNetCrossRefGoogle Scholar
  13. .
    J.L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod Gauthier-Villards, Paris, 1969. [In French].Google Scholar
  14. .
    I.I. Prokopyshyn. Parallel domain decomposition schemes for frictionless contact problems of elasticity. Visnyk Lviv Univ. Ser. Appl. Math. Comp. Sci., 14:123–133, 2008. [In Ukrainian].MATHGoogle Scholar
  15. .
    I.I. Prokopyshyn. Penalty method based domain decomposition schemes for contact problems of elastic solids. PhD thesis, IAPMM NASU, Lviv, 2010. URL:194.44.15.230:8080/v25/resources/thesis/Prokopyshyn.pdf. [In Ukrainian].Google Scholar
  16. .
    T. Sassi, M. Ipopa, and F.-X. Roux. Generalization of Lion’s nonoverlapping domain decomposition method for contact problems. Lect. Notes Comput. Sci. Eng., 60:623–630, 2008.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ihor I. Prokopyshyn
    • 1
  • Ivan I. Dyyak
    • 2
  • Rostyslav M. Martynyak
    • 1
  • Ivan A. Prokopyshyn
    • 2
  1. 1.Pidstryhach IAPMM NASULvivUkraine
  2. 2.Ivan Franko National University of LvivLvivUkraine

Personalised recommendations