One-Shot Domain Decomposition Methods for Shape Optimization Problems

  • Rongliang Chen
  • Xiao-Chuan Cai
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)


Shape optimization aims to optimize an objective function by changing the shape of the computational domain. In recent years, shape optimization has received considerable attentions. On the theoretical side there are several publications dealing with the existence of solution and the sensitivity analysis of the problem; see e.g., [6] and references therein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    F. Abraham, M. Behr, and M. Heinkenschloss. Shape optimization in stationary blood flow: A numerical study of non-Newtonian effects. Comput. Methods Biomech. Biomed. Engrg., 8:127–137, 2005.CrossRefGoogle Scholar
  2. [2].
    V. Agoshkov, A. Quarteroni, and G. Rozza. A mathematical approach in the design of arterial bypass using unsteady Stokes equations. J. Sci. Comput., 28:139–165, 2006.MathSciNetMATHCrossRefGoogle Scholar
  3. [3].
    S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Users Manual. Technical report, Argonne National Laboratory, 2010.Google Scholar
  4. [4].
    G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver. SIAM J. Sci. Comput., 27:687–713, 2005.Google Scholar
  5. [5].
    O. Ghattas and C. Orozco. A parallel reduced Hessian SQP method for shape optimization. In N. M. Alexandrov and M.Y. Hussaini, editors, Multidisciplinary Design Optimization: State of the Art, pages 133–152. SIAM, Philadelphia, 1997.Google Scholar
  6. [6].
    M. D. Gunzburger. Perspectives in Flow Control and Optimization: Advances in Design and Control. SIAM, Philadelphia, 2003.MATHGoogle Scholar
  7. [7].
    B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford University Press, Oxford, 2001.MATHGoogle Scholar
  8. [8].
    E. Prudencio and X.-C. Cai. Parallel multilevel restricted Schwarz preconditioners with pollution removing for PDE-constrained optimization. SIAM J. Sci. Comput., 29:964–985, 2007.MathSciNetMATHCrossRefGoogle Scholar
  9. [9].
    E. Prudencio, R. Byrd, and X.-C. Cai. Parallel full space SQP Lagrange-Newton-Krylov-Schwarz algorithms for PDE-constrained optimization problems. SIAM J. Sci. Comput., 27:1305–1328, 2006.MathSciNetMATHCrossRefGoogle Scholar
  10. [10].
    A. Quarteroni and G. Rozza. Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math. Models and Methods in Appl. Sci., 13:1801–1823, 2003.MathSciNetMATHCrossRefGoogle Scholar
  11. [11].
    A. Toselli and O. Widlund. Domain Decomposition Methods: Algorithms and Theory. Springer-Verlag, Berlin, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina
  2. 2.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations