Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients

  • Blanca Ayuso De Dios
  • Michael Holst
  • Yunrong Zhu
  • Ludmil Zikatanov
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Summary

In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coefficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coefficient and near-optimality with respect to the number of degrees of freedom.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1].
    O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge, 1994.MATHCrossRefGoogle Scholar
  2. [2].
    B. Ayuso de Dios, M. Holst, Y. Zhu, and L. Zikatanov. Multilevel Preconditioners for Discontinuous Galerkin Approximations of Elliptic Problems with Jump Coefficients. Arxiv preprint arXiv:1012.1287, to appear in Mathematics of Computation, 2010.Google Scholar
  3. [3].
    J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematical Sciences. Longman Scientific & Technical, Essex, England, 1993.Google Scholar
  4. [4].
    W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000.Google Scholar
  5. [5].
    M. Dryja, M. V. Sarkis, and Olof B. Widlund. Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numerische Mathematik, 72(3):313–348, 1996.Google Scholar
  6. [6].
    P. Oswald. Preconditioners for nonconforming discretizations. Mathematics of Computation, 65(215):923–941, 1996.MathSciNetMATHCrossRefGoogle Scholar
  7. [7].
    M. Sarkis. Multilevel methods for P 1 nonconforming finite elements and discontinuous coefficients in three dimensions. In Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), volume 180 of Contemp. Math., pages 119–124. Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  8. [8].
    M. V. Sarkis. Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. PhD thesis, Courant Institute of Mathematical Science of New York University, 1994.Google Scholar
  9. [9].
    J. Xu. Theory of Multilevel Methods. PhD thesis, Cornell University, 1989.Google Scholar
  10. [10].
    J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613, 1992.MathSciNetMATHCrossRefGoogle Scholar
  11. [11].
    J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing, 56:215–235, 1996.MathSciNetMATHCrossRefGoogle Scholar
  12. [12].
    J. Xu and Y. Zhu. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Mathematical Models and Methods in Applied Science, 18(1):77 –105, 2008.MathSciNetMATHCrossRefGoogle Scholar
  13. [13].
    Y. Zhu. Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization of elliptic PDE with jump coefficient. Arxiv preprint arXiv:1110.5159, Numerical Linear Algebra with Applications, DOI: 10.1002/nla.1856, 2012.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Blanca Ayuso De Dios
    • 1
  • Michael Holst
    • 2
  • Yunrong Zhu
    • 3
  • Ludmil Zikatanov
    • 4
  1. 1.Centre de Recerca Matematica (CRM)BarcelonaSpain
  2. 2.Department of MathematicsUniversity of California at San DiegoSan DiegoUSA
  3. 3.Department of MathematicsIdaho State UniversityPocatelloUSA
  4. 4.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations