Adaptive Finite Element Methods with Inexact Solvers for the Nonlinear Poisson-Boltzmann Equation

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 91)

Abstract

In this article we study adaptive finite element methods (AFEM) with inexact solvers for a class of semilinear elliptic interface problems.We are particularly interested in nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear Poisson-Boltzmann equation and its regularizations. The algorithm we study consists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to many adaptive finite element algorithms, but where the SOLVE step involves only a full solve on the coarsest level, and the remaining levels involve only single Newton updates to the previous approximate solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    M. Arioli, E.H. Georgoulis, and D. Loghin. Convergence of inexact adaptive finite element solvers for elliptic problems. Technical Report RAL-TR-2009-021, Science and Technology Facilities Council, October 2009.Google Scholar
  2. 2.
    R. Bank, M. Holst, R. Szypowski, and Y. Zhu. Finite element error estimates for critical exponent semilinear problems without mesh conditions. Preprint, 2011.Google Scholar
  3. 3.
    R. Bank, M. Holst, R. Szypowski, and Y. Zhu. Convergence of AFEM for semilinear problems with inexact solvers. Preprint, 2011.Google Scholar
  4. 4.
    L. Chen, M. Holst, J. Xu, and Y. Zhu. Local Multilevel Preconditioners for Elliptic Equations with Jump Coefficients on Bisection Grids. Arxiv preprint arXiv:1006.3277, 2010.Google Scholar
  5. 5.
    L. Chen, M. Holst, and J. Xu. The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM Journal on Numerical Analysis, 45(6):2298–2320, 2007.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    I-L. Chern, J.-G. Liu, and W.-C. Wan. Accurate evaluation of electrostatics for macromolecules in solution. Methods and Applications of Analysis, 10:309–328, 2003.Google Scholar
  7. 7.
    W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM Journal on Numerical Analysis, 33:1106–1124, 1996.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    FETK. The Finite Element ToolKit. http://www.FETK.org.
  9. 9.
    M. Holst, J.A. McCammon, Z. Yu, Y.C. Zhou, and Y. Zhu. Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation. Accepted for publication in Communications in Computational Physics, 2009.Google Scholar
  10. 10.
    M. Holst, G. Tsogtgerel, and Y. Zhu. Local Convergence of Adaptive Methods for Nonlinear Partial Differential Equations. arXiv, (1001.1382v1), 2010.Google Scholar
  11. 11.
    R.H. Nochetto, K.G. Siebert, and A. Veeser. Theory of adaptive finite element methods: An introduction. In R.A. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approximation, pages 409–542. Springer, 2009.Google Scholar
  12. 12.
    R. Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245–269, 2007.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM Journal on Numerical Analysis, 33(5):1759–1777, 1996.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departments of Mathematics and PhysicsUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Mathematics and StatisticsCalifornia State Polytechnic University, PomonaPomonaUSA
  3. 3.Department of MathematicsIdaho State UniversityPocatelloUSA

Personalised recommendations