Skip to main content

Competitive Design and Analysis for Machine-Minimizing Job Scheduling Problem

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

Abstract

We explore the machine-minimizing job scheduling problem, which has a rich history in the line of research, under an online setting. We consider systems with arbitrary job arrival times, arbitrary job deadlines, and unit job execution time. For this problem, we present a lower bound 2.09 on the competitive factor of any online algorithms, followed by designing a 5.2-competitive online algorithm. We would also like to point out a false claim made in an existing paper of Shi and Ye regarding a further restricted case of the considered problem. To the best of our knowledge, what we present is the first concrete result concerning online machine-minimizing job scheduling with arbitrary job arrival times and deadlines.

This work was supported in part by National Science Council (NSC), Taiwan, under Grants NSC99-2911-I-002-055-2, NSC98-2221-E-001-007-MY3, and Karlsruhe House of Young Scientists (KHYS), KIT, Germany, under a Grant of Visiting Researcher Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, M., Sitaraman, R., Rosenberg, A., Unger, W.: Scheduling time-constrained communication in linear networks. In: SPAA 1998, NY, pp. 269–278 (1998)

    Google Scholar 

  2. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-ptas for unsplittable flow on line graphs. In: STOC 2006, pp. 721–729. ACM, NY (2006)

    Google Scholar 

  3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J.S., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM 48, 1069–1090 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bar-Noy, A., Guha, S.: Approximating the throughput of multiple machines in real-time scheduling. SIAM J. Comput. 31, 331–352 (2002)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  6. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: An improved approximation algorithm for resource allocation. ACM Trans. Algorithms 7, 48:1–48:7 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chuzhoy, J., Codenotti, P.: Resource Minimization Job Scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 70–83. Springer, Heidelberg (2009)

    Google Scholar 

  8. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs with interval constraints. In: FOCS 2004, Washington, pp. 81–90 (2004)

    Google Scholar 

  9. Chuzhoy, J., Naor, J.S.: New hardness results for congestion minimization and machine scheduling. J. ACM 53, 707–721 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31, 730–738 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling with release times and deadlines on a minimum number of machines. IFIP, vol. 155, pp. 209–222. Springer, Boston

    Google Scholar 

  12. Crama, Y., Flippo, O., Klundert, J., Spieksma, F.: The assembly of printed circuit boards: A case with multiple machines and multiple board types (1998)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  14. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rajugopal, G., Hafez, R.: Adaptive rate controlled, robust video communication over packet wireless networks. Mob. Netw. Appl. 3, 33–47 (1998)

    Article  Google Scholar 

  16. Shi, Y., Ye, D.: Online bin packing with arbitrary release times. Theoretical Computer Science 390, 110–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spieksma, F.: On the approximability of an interval scheduling problem. Journal of Scheduling 2, 215–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yau, D., Lam, S.: Adaptive rate-controlled scheduling for multimedia applications. In: MULTIMEDIA 1996, pp. 129–140. ACM, New York (1996)

    Google Scholar 

  19. Yu, G., Zhang, G.: Scheduling with a minimum number of machines. Operations Research Letters 37, 97–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kao, MJ., Chen, JJ., Rutter, I., Wagner, D. (2012). Competitive Design and Analysis for Machine-Minimizing Job Scheduling Problem. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics