Skip to main content

Learning Embedded Data Structure with Self-Organizing Maps

  • Conference paper
  • 1289 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

Abstract

Self-Organizing Map (SOM) is undoubtedly one of the most famous and successful artificial neural network approaches. Since the SOM is related with the Vector Quantization learning process, minimizing error quantization and maximizing topology preservation can be concurrent tasks. Besides, even with some metrics, sometimes the analysis of the map results depends on the user and poses an additional difficulty when the user deals with high dimensional data. This work discusses a proposal of relocating the voted map units after the training phase in order to minimize the quantization error and evaluate the impact in the topology preservation. The idea is to enhance the visualization of embedded data structure from input samples using the SOM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  2. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2010)

    Google Scholar 

  3. Maaten, L., Postma, E., Herik, J.: Dimensionality reduction: A comparative review. Tilburg Centre for Creative Computing, pp. 1–33. Tilburg University, Tilburg (2009)

    Google Scholar 

  4. Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transaction on Computer, 401–409 (1969)

    Google Scholar 

  5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science Magazine 290, 2319–2323 (2000)

    Google Scholar 

  6. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  7. Kitani, E.C., Del-Moral-Hernandez, E., Giraldi, A.G., Thomaz, C.E.: Exploring and understanding the high dimensional and sparse image face space: A self organized manifold mapping. New approaches to characterization and recognition of faces. Intech Open Access Publisher (2011)

    Google Scholar 

  8. Kitani, E.C., Del-Moral-Hernandez, E., Thomaz, C.E., Silva, L.A.: Visual Inter-pretation of Self Organizing Maps. In: Proceedings of the XI Brazilian Symposium on Neural Networks SBRN 2010, pp. 37–42. IEEE CS Press (2010)

    Google Scholar 

  9. Kitani, E.C., Del-Moral-Hernandez, E., Silva, L.A.: SOMM – Self-Organized Manifold Mapping. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 355–362. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kiviluoto, K.: Topology preservation in Self Organizing Maps, pp. 294–299 (1996)

    Google Scholar 

  11. Bauer, H.U., Pawelzik, K.R.: Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Transactions on Neural Networks 3, 570–579 (1992)

    Article  Google Scholar 

  12. Villmann, T., Der, R., Martinetz, T.: A new quantitative measure of topology preservation. In: IEEE World Congress on Computational Intelligence, pp. 645–648 (1994)

    Google Scholar 

  13. Venna, J., Kaski, S.: Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 485–491. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Vesanto, J., Sulkawa, M., Hollmén, J.: On the decomposition of the Self-Organizing Map distortion measure. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2003), pp. 11–16 (2003)

    Google Scholar 

  15. Vesanto, J., et al.: SOM Toolbox for Matlab 5, Helsinki University of Technology, Helsinki, pp. 1–60. Report A57 (2000)

    Google Scholar 

  16. Pölzbauer, G.: Survey and comparison of quality measures for self organizing maps. In: Paralic, J., Pölzbauer, G., Rauber, A., (ed.), pp. 67–82 (2004)

    Google Scholar 

  17. Vesanto, J.: Data exploration process based on the self-organizing map, Computer Science and Engineering, Helsink University. Espoo Finland, Finnish Academies of Technology, Thesis (2002) ISBN - 951-666-596-9

    Google Scholar 

  18. Lampinen, J., Oja, E.: Clustering properties of hierarchical Self-Organizing Maps. Journal of Mathematical Imaging and Vision 3, 261–272 (1992)

    Article  Google Scholar 

  19. Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for exploratory data analysis. In: Proceedings of International Neural Network Conference, pp. 305–308 (1990)

    Google Scholar 

  20. Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson C. Kitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kitani, E.C., Del-Moral-Hernandez, E., Silva, L.A. (2013). Learning Embedded Data Structure with Self-Organizing Maps. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics