Improvements in the Visualization of Segmented Areas of Patterns of Dynamic Laser Speckle

  • Lucía I. Passoni
  • Ana Lucía Dai Pra
  • Adriana Scandurra
  • Gustavo Meschino
  • Christian Weber
  • Marcelo Guzmán
  • Héctor Rabal
  • Marcelo Trivi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 198)

Abstract

This paper proposes a method to visualize different regions into image of biospeckle patterns using Self-Organizing Maps. Images are obtained from sequences of laser speckle images of biological specimens. The dynamic speckle is a phenomenon that occurs when a beam of coherent light illuminates a sample in which there is some type of activity, not visible, which results in a variable pattern over time. Self-Organizing Maps have shown an efficient behavior for the identification of regions according to the activity of the phenomenon involved. In this paper we show results obtained in the segmentation of regions in corn seeds, particularly the detection of the floury zone.

Keywords

Dynamic Laser Speckle Biospeckle Self-Organizing Maps Corn seed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braga, R.A., Fabbro, I.M.D., Borem, F.M., Rabelo, G., Arizaga, R., Rabal, H.J., Trivi, M.: Assessment of seed viability by laser speckle techniques. Biosystems Engineering 86(3), 287–294 (2003), doi:10.1016/j.biosystemseng.2003.08.005CrossRefGoogle Scholar
  2. 2.
    Sendra, H., Murialdo, S., Passoni, L.: Dynamic laser speckle to detect motile bacterial response of pseudomonas aeruginosa. Journal of Physics: Conference Series 90(1), 012064 (2007)CrossRefGoogle Scholar
  3. 3.
    Pajuelo, M., Baldwin, G., Rabal, H., Cap, N., Arizaga, R., Trivi, M.: Biospeckle assessment of bruising in fruits. Optics and Lasers in Engineering 40(12), 13–24 (2003), doi:10.1016/S0143-8166(02)00063-5; <ce:title>Optics in Latin America part II</ce:title>CrossRefGoogle Scholar
  4. 4.
    Dai Pra, A.L., Passoni, L.I., Rabal, H.J.: Fuzzy granular computing and dynamic speckle interferometry for the identification of different thickness of wet coatings. Infocomp, Journal of Computer Science 8(4), 45–51 (2009)Google Scholar
  5. 5.
    Fricke-Begemann, T., Gülker, G., Hinsch, K.D., Wolff, K.: Corrosion monitoring with speckle correlation. Appl. Opt. 38(28), 5948–5955 (1999), doi:10.1364/AO.38.005948.12CrossRefGoogle Scholar
  6. 6.
    Rabal, H.J., Braga, R.A. (eds.): Dynamic Laser Speckle and Applications. CRC Press (2008)Google Scholar
  7. 7.
    Dai Pra, A.L., Passoni, L.I., Rabal, H.: Evaluation of laser dynamic speckle signals applying granular computing. Signal Processing 89(3), 266–274 (2009), doi:10.1016/j.sigpro.2008.08.012MATHCrossRefGoogle Scholar
  8. 8.
    Drury, S.M., Reynolds, T.L., Ridley, W.P., Bogdanova, N., Riordan, S., Nemeth, M.A., Sorbet, R., Trujillo, W.A., Breeze, M.L.: Composition of Forage and Grain from Second-Generation Insect-Protected Corn MON 89034 Is Equivalent to That of Conventional Corn (Zea mays L). J. Agric. Food Chem. 56(12), 4623–46302 (2008)CrossRefGoogle Scholar
  9. 9.
    Bragachini, M.A., Casini, C., Ustarroz, F., Saavedra, A.E., Mendez, J.A., Errasquin, L.: La calidad del grano de Maíz. En: Maíz Cadena de Valor Agregado. E.E.A. INTA Balcarce PRECOP II. Actualización Técnica 54, 9–10 (2010)Google Scholar
  10. 10.
  11. 11.
    Lepes, I.T., Miotto, R.M., Cedro, A.V., Ruegg, O.E.: Test de flotación en maíces duros argentinos. I Congreso Nacional de Maiz, Pergamino, Argentina, pp. 287–298 (1976)Google Scholar
  12. 12.
    Guzman, M., Meschino, G.J., Dai Pra, A.L., Trivi, M., Passoni, L.I., Rabal, H.: Dynamic laser speckle: decision models with computational intelligence techniques. Speckle 0001, 738717–738717-8 (2010)Google Scholar
  13. 13.
    Etchepareborda, P., Federico, A., Kaufmann, G.: Sensitivity evaluation of dynamic speckle activity measurements using clustering methods. Appl. Opt. 49, 3753–3761 (2010)CrossRefGoogle Scholar
  14. 14.
    Meschino, G., Murialdo, S., Passoni, L., Rabal, H., Trivi, M.: Biospeckle image stack process based on artificial neural networks. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 31-September 4, pp. 4056–4059 (2010), doi:10.1109/ IEMBS.2010.5627620Google Scholar
  15. 15.
    Braga, R.A., Silva, W.S., Sáfadi, T., Nobre, C.M.B.: Time history speckle pattern under statistical view. Optics Communications 281(9), 2443–2448 (2007) ISSN 0030-4018, doi:10.1016/j.optcom.2007.12.069Google Scholar
  16. 16.
    Trivi, M.: Dynamic Speckle in Dynamic Laser Speckle and Applications. In: Rabal, H.J., Braga, R.A. (eds.), pp. 21–51. CRC Press (November 2008)Google Scholar
  17. 17.
    Kohonen, T.: Self-Organizing Map. Springer (1995)Google Scholar
  18. 18.
    Vesanto, J., Sulkava, M.: Distance Matrix Based Clustering of the Self-Organizing Map. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 951–956. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Kiang, M.Y.: Extending the Kohonen self-organizing map networks for clustering analysis. Computational Statistics Data Analysis 38, 161–180 (2001)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11, 586–600 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lucía I. Passoni
    • 1
    • 2
  • Ana Lucía Dai Pra
    • 1
    • 2
  • Adriana Scandurra
    • 1
    • 2
  • Gustavo Meschino
    • 1
    • 2
  • Christian Weber
    • 1
    • 2
  • Marcelo Guzmán
    • 1
    • 2
  • Héctor Rabal
    • 1
    • 2
  • Marcelo Trivi
    • 1
    • 2
  1. 1.Facultad de Ingeniería.Universidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Centro de Investigaciones Ópticas CIC-CONICETLa PlataArgentina

Personalised recommendations