Skip to main content

Fuzzy Membership Scaling Mechanisms for Mobile Robot Behaviours

  • Conference paper
  • 3684 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 330)

Abstract

Fuzzy behaviours are commonly used in reactive mobile robot navigation strategies, where sensory information is either uncertain or incomplete. However, the complexity of such controllers usually grow exponentially with the number of fuzzy input partitions and rules in the rule base. Furthermore, attempts to reduce the number of input partitions will typically erode the performance of the controllers. This work investigates several membership function scaling mechanisms as an avenue for improving the performance of fuzzy behaviours based on minimal rule base controllers. The configurations are based on the closely-related concepts of linguistic hedges and non-linear scaling. The scaling parameters for the goal seeking and obstacle avoidance behaviours are tuned in simulation via a genetic algorithm optimisation process. The results show that the controller configuration based on input membership function scaling consistently outperforms simple fuzzy logic controllers with the same number of fuzzy input partitions and rules.

Keywords

  • Mobile robots
  • fuzzy logic
  • membership function
  • fuzzy hedges
  • genetic algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35197-6_7
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-35197-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saffiotti, A.: The Uses of Fuzzy Logic in Autonomous Robot Navigation. Soft Computing 1(4), 180–197 (1997)

    Google Scholar 

  2. Aguirre, E., González, A.: Fuzzy Behaviours for Mobile Robot Navigation: Design, Coordination and Fusion. International Journal of Approximate Reasoning 25(3), 255–289 (2000)

    Google Scholar 

  3. Parasuraman, S., Ganapathy, V., Shirinzadeh, B.: Mobile Robot Navigation Using Alpha Level Fuzzy Logic System: Experimental Investigations. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, pp. 1878–1884 (2008)

    Google Scholar 

  4. Maaref, H., Barret, C.: Sensor-Based Navigation of a Mobile Robot in an Indoor Environment. Robotics and Autonomous Systems 38, 1–18 (2002)

    Google Scholar 

  5. Yang, X., Moallem, M., Patel, R.: A Sensor-Based Navigation Algorithm for a Mobile Robot Using Fuzzy Logic. International Journal of Robotics and Automation 21, 129–140 (2006)

    Google Scholar 

  6. Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., Herrera, F.: Hybrid Learning Models to Get the Interpretability-Accuracy Trade-Off in Fuzzy Modeling. Soft Computing 10(9), 717–734 (2005)

    Google Scholar 

  7. Samsudin, K., Ahmad, F., Mashohor, S.: A Highly Interpretable Fuzzy Rule Base Using Ordinal Structure for Obstacle Avoidance of Mobile Robot. Applied Soft Computing 11(2), 1631–1637 (2011)

    Google Scholar 

  8. Liu, B., Chen, C., Tsao, J.: Design of Adaptive Fuzzy Logic Controller Based on Linguistic-Hedge Concepts and Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(1), 32–53 (2001)

    Google Scholar 

  9. Eshelman, L., Schaffer, J.: Real-Coded Genetic Algorithms and Interval-Schemata. Foundation of Genetic Algorithms 2, 187–202 (1993)

    Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, London (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loh, J.L., Parasuraman, S. (2012). Fuzzy Membership Scaling Mechanisms for Mobile Robot Behaviours. In: Ponnambalam, S.G., Parkkinen, J., Ramanathan, K.C. (eds) Trends in Intelligent Robotics, Automation, and Manufacturing. IRAM 2012. Communications in Computer and Information Science, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35197-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35197-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35196-9

  • Online ISBN: 978-3-642-35197-6

  • eBook Packages: Computer ScienceComputer Science (R0)