Applications of EMMS Drag in Industry

  • Jinghai Li
  • Wei Ge
  • Wei Wang
  • Ning Yang
  • Xinhua Liu
  • Limin Wang
  • Xianfeng He
  • Xiaowei Wang
  • Junwu Wang
  • Mooson Kwauk
Chapter

Abstract

This chapter reviews the use of the EMMS drag and paradigm to solve industrial problems including the design, optimization and scale-up of the fluid catalytic cracking (FCC) process, and optimization of fluidized bed combustion and Fischer-Tropsch (FT) synthesis. Application of the EMMS drag to these problems in turn aids its development.

Keywords

Choking Circulating fluidized bed Combustion EMMS Fischer-Tropsch Fluid catalytic cracking Multiscale CFD Multi-scale CFD 

Notation

Cd

Effective drag coefficient for a particle

db

Bubble diameter, m

dp

Particle diameter, m

Gs

Solids flux, kg/m2 s

Hd

Heterogeneity index

K*

Saturation carrying capacity, kg/m2 s

p

Pressure, Pa

Q

Gas volumetric flow rate, m3/s

U

Superficial velocity (=  g), m/s

Uck

Choking gas velocity, m/s

Us

Superficial slip velocity, m/s

W

Solids flow rate (kg/s)

x

Mass fraction of particles

Y

Mass fraction of gas species

z

Axial height, m

Rep

Local superficial Reynolds number (ρ g d p U s/μ g)

Greek letters

α

Volume fraction

Θ

Granular temperature, m2/s2

μ

Viscosity, Pa s

ρ

Density, kg/m3

Subscripts

b

Bubble

g

Gas phase

l

Liquid phase

p

Particle

s

Solid phase

References

  1. Bauer M, Eigenberger G (1999) A concept for multi-scale modeling of bubble columns and loop reactors. Chem Eng Sci 54:5109–5117CrossRefGoogle Scholar
  2. Chen Y (2006) Recent advances in FCC technology. Powder Technol 163:2–8CrossRefGoogle Scholar
  3. Chen J, Wu Z, Wang Y, Yang N (2010) Simulation of gas–liquid–solid flow in slurry bubble column reactors (internal report). Institute of Process Engineering Chinese Academy of Sciences, BeijingGoogle Scholar
  4. Cheng C (2001) Energy-minimization multi-scale/Core-annulus model for circulating fluidized beds. Doctoral Thesis, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China (2001)Google Scholar
  5. Field MA, Gill DW, Morgan BB, Hawskley PGW (1967) Combustion of pulverized coal. BCURA, Leatherhand, pp 1–100Google Scholar
  6. Ge W, Wang W, Yang N, Li J, Kwauk M, Chen F, Chen J, Fang X, Guo L, He X, Liu X, Liu Y, Lu B, Wang J, Wang J, Wang L, Wang X, Xiong Q, Xu M, Deng L, Han Y, Hou C, Hua L, Huang W, Li B, Li C, Li F, Ren Y, Xu J, Zhang N, Zhang Y, Zhou G, Zhou G (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem Eng Sci 66:4426–4458CrossRefGoogle Scholar
  7. Gerstermann F, Kral R, Stein U (1989) Inbetriebname und erstebetriebsergebnisse des Dampferzeugers mit zirkulierender Wirbelschichtfeuerung bei Bayer AG Leverkusen. VGB Kraftwerkstechnik 69(7):702Google Scholar
  8. Gidaspow D (1994) Multiphase flow and fluidization-continuum and kinetic theory descriptions. Academic, CaliforniaMATHGoogle Scholar
  9. Grace JR, Cui H, Elnashaie SS (2007) Non-uniform distribution of two-phase flows through parallel identical paths. Can J Chem Eng 85:662–668CrossRefGoogle Scholar
  10. Guillen DP, Grimmett T, Gandrik AM, Antal SP (2009) Development of a computational multiphase flow model for Fischer-Tropsch synthesis in a slurry bubble column reactor. Chem Eng J 176–177:83–94Google Scholar
  11. Johnson PC, Jackson R (1987) Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J Fluid Mech 176:67–93CrossRefGoogle Scholar
  12. Kim TW, Choi JH, Shun DW, Jung B, Kim SS, Son JE, Kim SD, Grace JR (2006) Wastage rate of water walls in a commercial circulating fluidized bed combustor. Can J Chem Eng 84(6):680–687CrossRefGoogle Scholar
  13. Kim TW, Choi JH, Shun DW, Kim SS, Kim SD, Grace JR (2007) Wear of water walls in a commercial circulating fluidized bed combustor with two gas exits. Powder Technol 178(3):143–150CrossRefGoogle Scholar
  14. Krishna R, Sie ST (2000) Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105CrossRefGoogle Scholar
  15. La Nauze RD (1985) Fundamentals of coal combustion. In: Davidson JF, Clift R, Harrison D (eds) Fluidization. Academic, London, pp 631–673Google Scholar
  16. Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multi-scale method. Metallurgical Industry Press, BeijingGoogle Scholar
  17. Li J, Kwauk M (2003) Exploring complex systems in chemical engineering—the multi-scale methodology. Chem Eng Sci 58:521–535CrossRefGoogle Scholar
  18. Li J, Cheng C, Zhang Z, Yuan J, Nemet A, Fett FN (1999) The EMMS model: its application, development and updated concepts. Chem Eng Sci 54:5409–5425CrossRefGoogle Scholar
  19. Lu B, Wang W, Wang J, Li J (2005) Report on CFD simulation of Sinopec. MIP. RIPP of Sinopec and IPE of CAS (internal report)Google Scholar
  20. Lu B, Wang W, Li J, Wang X, Gao S, Lu W, Xu Y, Long J (2007) Multiscale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chem Eng Sci 62:5487–5494CrossRefGoogle Scholar
  21. Lu B, Wang W, Li J (2009) Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem Eng Sci 64(15):3437–3447CrossRefGoogle Scholar
  22. Lu B, Zhang N, Wang W, Li J, Chiu J, Kang S (2012) 3D full-loop simulation of an industrial-scale circulating fluidized bed boiler. AIChE J. doi: 10.1002/aic.13917
  23. Luecke K, Hartge EU, Werther J (2004) A 3D model of combustion in large-scale circulating fluidized bed boilers. Int J Chem React Eng 2:A11Google Scholar
  24. Masnadi MS, Grace JR, Elyasi S, Bi X (2010) Distribution of multi-phase gas-solid flow across identical parallel cyclones: Modeling and experimental study. Sep Purif Technol 72(1):48–55CrossRefGoogle Scholar
  25. Muroyama A, Fan L-S (1985) Fundamentals of gas–liquid–solid fluidization. AIChE J 30:1–34CrossRefGoogle Scholar
  26. Myöhänen K, Hyppänen T, Loschkin M (2005) Converting measurement data to process knowledge by using three-dimensional CFB furnace model. In: Cen K (eds) Circulating fluidized bed technology VIII—Proceedings of the 8th international conference on circulating fluidized beds, International Academic Publishers, World Publishing Corp., Hangzhou, pp 306–312Google Scholar
  27. Pallares D, Johnsson F (2006) Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds. Prog Energy Combust Sci 32:539–569CrossRefGoogle Scholar
  28. Schöler J (1993) Ein Gesamtmodell fur Dampferzeugeranlagen mit zirkulierender Wirbelschichtfeuerung. Verlag Shaker, AachenGoogle Scholar
  29. Wang W, Li J (2007) Simulation of gas–solid two-phase flow by a multi-scale CFD approach-extension of EMMS model to the sub-grid level. Chem Eng Sci 62:208–231CrossRefGoogle Scholar
  30. Wang W, Li J (2010) Chapter 12—Modeling of fluidized bed combustion. In: Maximilian L, Franz W, Avinash KA (eds) Handbook of combustion, vol. 4. Wiley-VCH, Berlin, pp. 437–472Google Scholar
  31. Wang X, Gao S, Xu Y, Zhang J (2005) Gas-solids flow patterns in a novel dual-loop FCC riser. Powder Technol 152:90–99CrossRefGoogle Scholar
  32. Wang W, Lu B, Li J (2007) Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chem Eng Sci 62:814–819CrossRefGoogle Scholar
  33. Wang W, Lu B, Dong W, Li J (2008) Multiscale CFD simulation of operating diagram for gas–solid risers. Can J Chem Eng 86:448–457CrossRefGoogle Scholar
  34. Wang W, Ge W, Yang N, Li J (2011) Chapter 1: Meso-scale modeling—the key to multi-scale CFD simulation. In: Guy BM (ed) Advances in Chemical Engineering. Elsevier, New York, pp 1–58Google Scholar
  35. Xiao X, Wang W, Yang H, Zhang J, Yue G (2005) Two-dimensional combustion modeling of CFB boiler furnace based on an Euler-Euler approach and the kinetic theory of granular flow. In: Cen K (eds) Circulating fluidized bed technology VIII—Proceedings of the 8th international conference on circulating fluidized beds, International Academic Publishers, World Publishing Corp., Hangzhou, pp 394–401Google Scholar
  36. Xu Y, Zhang J, Rong J (2001) A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha. Pet Process Petrochem 32(8):1–5 (In Chinese)Google Scholar
  37. Xu Y, Gong J, Zhang J, Rong J, Xu H (2004) Experimental study on “two reaction zone” concept connected with MIP process. Acta Petrolei Sinica 20(4):1–5 (In Chinese)Google Scholar
  38. Yang N, Wang W, Ge W, Li J (2003) Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow. China Particuol 1(1):38–41CrossRefGoogle Scholar
  39. Yang N, Chen J, Zhao H, Ge W, Li J (2007) Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem Eng Sci 62:6978–6991CrossRefGoogle Scholar
  40. Yates I, Satterfield C (1991) Intrinsic kinetics of the Fischer–Tropsch synthesis on a cobalt catalyst. Energy Fuels 5:168–173CrossRefGoogle Scholar
  41. Yue G, Yang H, Nie L, Wang Y, Zhang H (2008) Hydrodynamics of 300 MW e and 600 MW e CFB boilers with asymmetric cyclone layout. Circulating fluidized bed technology IX—Proceedings of the 9th international conference on circulating fluidized beds, Hamburg, pp 153–158Google Scholar
  42. Zhang N (2010) EMMS-based meso-scale mass transfer model and its application to circulating fluidized bed combustion simulation. Doctoral thesis, Institute of Process Engineering, Chinese Academy of Sciences. (in Chinese)Google Scholar
  43. Zhang N, Lu B, Wang W, Li J (2010) 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem Eng J 162(2):821–828CrossRefGoogle Scholar
  44. Zhou W, Zhao CS, Duan LB, Qu CR, Chen XP (2011) Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor. Chem Eng J 166:306–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jinghai Li
    • 1
  • Wei Ge
    • 1
  • Wei Wang
    • 1
  • Ning Yang
    • 1
  • Xinhua Liu
    • 1
  • Limin Wang
    • 1
  • Xianfeng He
    • 1
  • Xiaowei Wang
    • 1
  • Junwu Wang
    • 1
  • Mooson Kwauk
    • 1
  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations