Complete Realization of the EMMS Paradigm

  • Jinghai Li
  • Wei Ge
  • Wei Wang
  • Ning Yang
  • Xinhua Liu
  • Limin Wang
  • Xianfeng He
  • Xiaowei Wang
  • Junwu Wang
  • Mooson Kwauk
Chapter

Abstract

In this chapter, the structural consistency between phenomena, model and software kept in  Chap. 6 is further extended to hardware design, so that a preliminary but systematic realization of the EMMS paradigm, from model to software to hardware, is presented. The methods described in  Chaps. 4 6 are extended or improved accordingly. In particular, simulation at the micro-scale and implementation of hardware for the EMMS paradigm will be addressed. The corresponding software is characterized by couplings between steady-state distribution and dynamic evolution, and between continuum- and particle-based methods, and demonstrates the feasibility of virtual process engineering (VPE).

Keywords

Accuracy, capacity and efficiency (ACE) Continuum-discrete coupling Discrete simulation EMMS paradigm  Fluid catalytic cracking (FCC) Manycore computing Meso-scale processing units Multiscale hardware Realtime simulation Scaling-up Virtual process engineering (VPE) 

References

  1. Ahmad I, Gulati TR (2005) Mixed type duality for multiobjective variational problems with generalized (F, ρ)-convexity. J Math Appl 306:669–683MathSciNetMATHGoogle Scholar
  2. Alder BJ, Wainwright TE (1956) Molecular dynamics by electronic computers. In: Proceedings of the international symposium on transport processes in statistical mechanics, Brussels, Interscience, Wiley, New YorkGoogle Scholar
  3. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  4. Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds: equations of motion. Ind Eng Chem Fundam 6:527–539CrossRefGoogle Scholar
  5. Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys 227:5342–5359MATHCrossRefGoogle Scholar
  6. Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow 22(2):379–402MATHCrossRefGoogle Scholar
  7. Arana-Jiménez M, Ruiz-Garzòn G, Rufián-Lizana A, Osuna-Gòmez R (2010) A necessary and sufficient condition for duality in multiobjective variational problems. Eur J Oper Res 201:672–681MATHCrossRefGoogle Scholar
  8. Balamane H, Halicioglu T, Tiller WA (1992) Comparative-study of silicon empirical interatomic potentials. Phys Rev B 46:2250–2279CrossRefGoogle Scholar
  9. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, OxfordGoogle Scholar
  10. Bortz AB, Kalos MH, Lebowitz JL (1975) A new algorithm for Monte Carlo simulation of Ising spin systems. J Comput Phys 17(1):10–18CrossRefGoogle Scholar
  11. Brandvik T, Pullan G (2008) Acceleration of a 3D Euler solver using commodity graphics hardware. In: Proceedings of the 46th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USAGoogle Scholar
  12. Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364MathSciNetCrossRefGoogle Scholar
  13. Chen F, Ge W, Guo L, He X, Li B, Li J, Li X, Wang X, Yuan X (2009) Multi-scale HPC system for multi-scale discrete simulation—development and application of a supercomputer with 1 Petaflops peak performance in single precision. Particuology 7:332–335CrossRefGoogle Scholar
  14. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRefGoogle Scholar
  15. Dziekonski A, Sypek P, Kulas L, Mrozowski M (2008) Implementation of matrix-type FDTD algorithm on a graphics accelerator. Presented at the proceedings of the 17th international conference on microwaves, Radar and Wireless Communications, pp 1–4Google Scholar
  16. Español P (1998) Fluid particle model. Phys Rev E 57:2930–2948CrossRefGoogle Scholar
  17. Ge W, Li J (1996) Pseudo-particle approach to hydrodynamics of gas-solid two-phase flow. In: Kwauk M, Li J (eds) Proceedings of the fifth international conference on circulating fluidized beds. Science Press, Beijing, pp 260–265Google Scholar
  18. Ge W, Li J (2002) General approach for discrete simulation of complex systems. Chin Sci Bull 47(14):1172–1175Google Scholar
  19. Ge W, Li J (2003) Macro-scale phenomena reproduced in microscopic systems: pseudo-particle modeling of fluidization. Chem Eng Sci 58:1565–1585CrossRefGoogle Scholar
  20. Ge W, Ma J, Zhang J, Tang D, Chen F, Wang X, Li J (2005) Particle methods for multi-scale simulation of complex flows. Chinese Sci Bulletin 50:1057--1069Google Scholar
  21. Ge W, Chen F, Zhou G, Li J (2006) Multi-scale analytical methods for complex flows in process engineering: retrospect and prospect. In: Sih CG (ed) Multiscaling in molecular and continuum mechanics: interaction of time and size from macro to nano. Springer, Berlin, pp 141–160Google Scholar
  22. Ge W, Chen F, Gao J, Gao S, Huang J, Liu X, Ren Y, Sun Q, Wang L, Wang W, Yang N, Zhang J, Zhao H, Zhou G, Li J (2007) Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377CrossRefGoogle Scholar
  23. Ge W, Wang W, Dong W, Wang J, Lu B, Xiong Q, Li J (2008) Meso-scale structure—a challenge of computational fluid dynamics for circulating fluidized bed risers, CFB 9. The 9th international conference on circulating fluidized bed, 13–16 May 2008, Hamburg, pp 19–37Google Scholar
  24. Ge W, Wang W, Yang N, Li J, Kwauk M, Chen F, Chen J, Fang X, Guo L, He X, Liu X, Liu Y, Lu B, Wang J, Wang J, Wang L, Wang X, Xiong Q, Xu M, Deng L, Han Y, Hou C, Hua L, Huang W, Li B, Li C, Li C, Ren Y, Xu J, Zhang N, Zhang Y, Zhou G, Zhou G (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem Eng Sci 66(19):4426–4458CrossRefGoogle Scholar
  25. Ge W, Wang X, Xu J, Hou C, Xiong Q, Li B, Wang L, Ren Y, Chen F, Xu M, He X, Guo L, Li J (2012) Multi-scale continuum-particle simulation on CPU-GPU hybrid supercomputer. In: Yuan D et al (eds) GPU solutions to multi-scale problems in science and engineering. Springer, BerlinGoogle Scholar
  26. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Royal Astron Soc 181:375–389Google Scholar
  27. Harlow FH (1956) A machine calculation method for hydrodynamic problems. Los Alamos Scientific Laboratory report LAMSGoogle Scholar
  28. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160CrossRefGoogle Scholar
  29. Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas fluidised bed: a hard-sphere approach. Chem Eng Sci 51:99–108CrossRefGoogle Scholar
  30. Hou C, Xu J, Wang P, Huang W, Wang X (2012a) Efficient GPU-accelerated molecular dynamics simulation of solid covalent crystals. Comput Phys Commun. doi: 10.1016/j.cpc.2013.01.001
  31. Hou C, Xu J, Wang P, Huang W, Wang X, Ge W, He X, Guo L, Li J (2012b) Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A. Int J High Perform Comput Appl. doi: 10.1177/1094342012456047
  32. Hrenya CM, Sinclair JL (1997) Effects of particle-phase turbulence in gas-solid flows. AIChE J 43(4):853–869CrossRefGoogle Scholar
  33. Jones DAR, Leary B, Boger DV (1992) The rheology of a sterically stabilized suspension at high concentration. J Colloid Interface Sci 150(1):84–96CrossRefGoogle Scholar
  34. Joshi MS (2010) Graphical Asian options. Wilmott J 2:97–107CrossRefGoogle Scholar
  35. Karplus M, Petsko GA (1990) Molecular dynamic simulations in biology. Nature 347(6294):631–639CrossRefGoogle Scholar
  36. Koshizuka S, Tamako H, Oka Y (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J 4(1):29–46Google Scholar
  37. Lennard-Jones JE (1924) On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. In: Proceedings of the royal society of London. Series A, containing papers of a mathematical and physical character, vol 106(738), pp 441–462Google Scholar
  38. Li Y, Kwauk M (1980) The dynamics of fast fluidization. In: Grace JR, Matsen JM (eds) Fluidization. Pergamon Press, New York, pp 537–544CrossRefGoogle Scholar
  39. Li J, Kwauk M (1994) Particle–fluid two-phase flow: the energy-minimization multi-scale method. Metallurgical Industry Press, BeijingGoogle Scholar
  40. Li J, Ge W, Kwauk M (2009) Meso-scale phenomena from compromise—a common challenge, not only for chemical engineering, arXiv:0912.5407Google Scholar
  41. Liou M-S, Steffen C (1993) A new flux splitting scheme. J Comput Phys 107:23–39MathSciNetMATHCrossRefGoogle Scholar
  42. Liu X, Guo L, Xia Z, Lu B, Zhao M, Meng F, Li Z, Li J (2012) Harnessing the power of virtual reality. Chem Eng Prog 108(7):28–33Google Scholar
  43. Lu B, Wang W, Wang X, Gao S, Li JH, Lu W, Xu Y, Long J (2007) Multi-scale CFD simulation of gas-solid flow in MIP reactors using a structure-dependent drag model. Chem Eng Sci 62:5487–5494CrossRefGoogle Scholar
  44. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. The Astron J 82:1013–1024Google Scholar
  45. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N (1984) Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140:223–256MATHCrossRefGoogle Scholar
  46. McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61:2332–2335CrossRefGoogle Scholar
  47. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astronaut Astrophys 30:543–574CrossRefGoogle Scholar
  48. Muller I, Ruggeri T (1993) Extended thermodynamics. Springer, BerlinGoogle Scholar
  49. Noble D, Torczynski J (1998) A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C 9:1189–1201CrossRefGoogle Scholar
  50. Ottinger HC (1997) Beyond equilibrium thermodynamics. Wiley-Interscience, New JerseyGoogle Scholar
  51. Ouyang J, Li J (1999) Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization. Chem Eng Sci 54:5427–5440CrossRefGoogle Scholar
  52. Pandey P, Turton R, Nitin J, Hammerman E, Ergun J (2006) Scale-up of a Pan-Coating Process. AAPS Pharm Sci Tech 7(4):E1--E8Google Scholar
  53. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New YorkMATHGoogle Scholar
  54. Qi HB, Xu J, Ge W, Li J (2013) DEM simulation and dynamical analysis of rotating drums. To be submitted to ParticuologyGoogle Scholar
  55. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University, CambridgeGoogle Scholar
  56. Rudinger G (1980) Fundamentals of gas–particle flow. Elsevier, New YorkGoogle Scholar
  57. Sagan H (1994) Space-filling curves. Springer, New YorkMATHCrossRefGoogle Scholar
  58. Sinclair JL, Jackson R (1989) Gas–particle flow in a vertical pipe with particle–particle interactions. AIChE J 35(9):1473–1486CrossRefGoogle Scholar
  59. Spalding DB (1980) Numerical computation of multiphase fluid flow and heat transfer. In: Taylor C (ed) Recent advances in numerical methods in fluids. Pineridge Press, LondonGoogle Scholar
  60. Stillinger FH, Weber TA (1985) Computer-simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271CrossRefGoogle Scholar
  61. Tang D, Ge W, Wang X, Ma J, Guo L, Li J (2004) Parallelizing of macro-scale pseudo-particle modeling for particle–fluid systems. Sci China, Ser B: Chem 47(5):434–442Google Scholar
  62. Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56:632–635CrossRefGoogle Scholar
  63. Tsallis C (2010) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, BerlinGoogle Scholar
  64. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–89CrossRefGoogle Scholar
  65. Tsuji T, Yabumoto K, Tanaka T (2008) Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technol 184:132–140CrossRefGoogle Scholar
  66. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103CrossRefGoogle Scholar
  67. Wang X, Ge W (2012) The Mole-8.5 supercomputing system. In: Vetter JS (ed) Contemporary high performance computing: from petascale toward exascale. Taylor and Francis, New YorkGoogle Scholar
  68. Wang W, Li J (2007) Simulation of gas-solid two-phase flow by a multi-scale CFD approach: extension of the EMMS model to the sub-grid scale level. Chem Eng Sci 62:208–231CrossRefGoogle Scholar
  69. Wang X, Guo L, Ge W, Tang D, Ma J, Yang Z, Li J (2005) Parallel implementation of macro-scale pseudo-particle simulation for particle–fluid systems. Comput Chem Eng 29:1543–1553CrossRefGoogle Scholar
  70. Wang J, Ge W, Li J (2008) Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem Eng Sci 63:1553–1571CrossRefGoogle Scholar
  71. Wang L, Zhou G, Wang X, Xiong Q, Ge W (2010a) Direct numerical simulation of particle–fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method. Particuology 8:379–382CrossRefGoogle Scholar
  72. Wang J, Xu M, Ge W, Li J (2010b) GPU accelerated direct numerical simulation with SIMPLE arithmetic for single-phase flow. Chin Sci Bull 55:1979–1986 (in Chinese)CrossRefGoogle Scholar
  73. Wang X, Ge W, He X (2010c) Development and application of a HPC system for multi-scale discrete simulation-Mole-8.5. In: International supercomputing conference, GermanyGoogle Scholar
  74. Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Series 62:100–111Google Scholar
  75. Xiong Q, Deng L, Wang W, Ge W (2011) SPH method for two-fluid modeling of particle–fluid fluidization. Chem Eng Sci 66:1859–1865CrossRefGoogle Scholar
  76. Xiong Q, Li B, Zhou G, Fang X, Xu J, Wang J, He X, Wang X, Wang L, Li J (2012) Large-scale DNS of gas-solid flows on Mole-8.5. Chem Eng Sci 71:422–430CrossRefGoogle Scholar
  77. Xu BH, Yu AB (1997) Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52:2785–2809CrossRefGoogle Scholar
  78. Xu Y, Zhang J, Long J (2001) A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha. Petroleum Process Petrochem 32:1–5 (in Chinese)Google Scholar
  79. Xu M, Ge W, Li J (2007) A discrete particle model for particle–fluid flows with considerations of sub-grid structures. Chem Eng Sci 62:2302–2308CrossRefGoogle Scholar
  80. Xu W, Xu F, Jones M, Keszthelyi B, Sedat J, Agard D, Mueller K (2010) High performance iterative electron tomography reconstruction with long-object compensation using graphics processing units (GPUs). J Struct Biol 171:142–153CrossRefGoogle Scholar
  81. Xu J, Qi H, Fang X, Ge W, Wang X, Xu M, Chen F, He X, Li J (2011a) Quasi-realtime simulation of rotating drum using discrete element method with parallel GPU computing. Particuology 9:446–450CrossRefGoogle Scholar
  82. Xu J, Wang X, He X, Ren Y, Ge W, Li J (2011b) Application of the Mole-8.5 supercomputer: probing the whole influenza virion at the atomic level. Chin Sci Bull 56(20):2114–2118CrossRefGoogle Scholar
  83. Xu J, Ren Y, Ge W, Wang X, He X (2012a) A molecular view of a virus. drug discovery & development. http://www.dddmag.com/articles/2012/03/molecular-view-virus
  84. Xu M, Chen F, Liu X, Ge W, Li J (2012b) Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU–GPU hybrid computation. Chem Eng J 207–208:746–757CrossRefGoogle Scholar
  85. Yang N, Wang W, Ge W, Li J (2003) CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem Eng J 96:71–80CrossRefGoogle Scholar
  86. Zhang Y, Ge W, Wang X, Yang C (2011) Validation of EMMS-based drag model using lattice Boltzmann simulations on GPUs. Particuology 9:365–373CrossRefGoogle Scholar
  87. Zhou G, Ge W, Li J (2010) Smoothed particles as a non-Newtonian fluid: a case study in Couette flow. Chem Eng Sci 65(6):2258–2262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jinghai Li
    • 1
  • Wei Ge
    • 1
  • Wei Wang
    • 1
  • Ning Yang
    • 1
  • Xinhua Liu
    • 1
  • Limin Wang
    • 1
  • Xianfeng He
    • 1
  • Xiaowei Wang
    • 1
  • Junwu Wang
    • 1
  • Mooson Kwauk
    • 1
  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations