Skip to main content

Footprint and Philosophy

  • Chapter
  • First Online:
From Multiscale Modeling to Meso-Science

Abstract

This chapter summarizes the footprint, philosophy and strategy of this book. The historical evolution of the energy minimization multiscale (EMMS) model is briefly introduced; the structure of the book is also outlined. To introduce the philosophy of this book, the spectrum of science and technology and the common multiscale nature of different disciplines are discussed. As meso-scales are identified as the critical issue in understanding complex systems, three such levels (material, reactor and system) in process engineering are analyzed in detail, emphasizing the importance of compromise between dominant mechanisms in generating meso-scale phenomena. Finally, the footprint of the EMMS model from a simple idea to a computational paradigm (the EMMS paradigm), and further to meso-science, is outlined to complete the overview of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( C_{\text{d}} \) :

Drag coefficient, dimensionless

d cl :

Cluster diameter, m

d p :

Particle diameter, m

\( E_{\text{j}} \left( {\mathbf{x}} \right) \) :

Objective function with respect to dominant mechanism j

\( E_{\text{OH}} \) :

Hydrophilic potential in unit volume, m2/s3

\( E_{\text{WT}} \) :

Lipophilic potential in unit volume, m2/s3

\( E_{\text{s}} \) :

Surface energy in unit area, m2/s3

\( E_{{{\upmu}}} \) :

Viscous dissipation rate in unit volume, m2/s3

F i :

Constraints condition i

f :

Volume fraction of dense phase, dimensionless

\( g \) :

Gravitational acceleration, m/s2

\( H \) :

The height of the bed, m

\( H_{\text{a}} \) :

Potential a in unit volume, m2/s3

\( H_{\text{b}} \) :

Potential b in unit volume, m2/s3

\( L \) :

Characteristic length of flow, m

\( N_{\text{surf}} \) :

Rate of energy dissipation due to bubble breakage and coalescence per unit mass, W/kg

\( N_{\text{st}} \) :

Rate of energy dissipation for transporting and suspending particles per unit mass, W/kg

\( N_{\text{turb}} \) :

Rate of energy dissipation in turbulent liquid phase per unit mass, W/kg

\( R \) :

Pipe radius, m

\( Re \) :

Reynolds number, dimensionless

\( r \) :

Radial coordinate, m

U c :

Gas in the dense phase superficial velocity, m/s

U f :

Gas in the dilute phase superficial velocity, m/s

U pc :

Solid in the dense phase superficial velocity, m/s

U pf :

Solid in the dilute phase superficial velocity, m/s

\( W_{\text{st}} \) :

Energy consumption for transporting and suspending particles in unit volume, W/m3

\( \bar{W}_{\rm v} \) :

Viscous shear dissipation rate in unit volume, W/m3

\( \bar{W}_{\text{te}} \) :

Turbulent dissipation rate in unit volume, W/m3

X :

State parameter

\( S \) :

Surface energy in unit volume, m2/s3

\( Sh \) :

Sherwood number, dimensionless

\( \varepsilon \) :

Local average voidage, dimensionless

ε c :

Voidage in dense phase, dimensionless

ε f :

Voidage in dilute phase, dimensionless

\( \varphi_{\rm r} \) :

Dissipation rate of unit amount of kinetic energy across unit length, m2/s3

\( \eta \) :

Kolmogorov microscales, m

\( \rho \) :

Density, kg/m3

a:

Index of particle a

b:

Index of particle b

c:

Dense phase

f:

Dilute phase or fluid

g:

Gas

mb:

Minimum bubble

mf:

Minimum fluidization

p:

Particle

s:

Solid

CFB:

Circulating fluidized bed

CFD:

Computational fluid dynamics

CPU:

Central processing unit

CUDA:

Compute unified device architecture

EMMS:

Energy-minimization multiscale

FD:

Fluid-dominated

GPU:

Graphics processing unit

MOV:

Multi-objective variational

PD:

Particle-dominated

PFC:

Particle-fluid compromising

TFM:

Two-fluid model

VPE:

Virtual process engineering

References

  • Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds: equations of motion. Ind Eng Chem Fundam 6:527–539

    Article  Google Scholar 

  • Bird RB, Stewart W, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Cussler EL, Moggridge GD (2001) Chemical product design. Cambridge University Press, Cambridge

    Google Scholar 

  • Cussler EL, Wei J (2003) Chemical product engineering. AIChE J 49(5):1072–1075

    Google Scholar 

  • Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703

    Article  Google Scholar 

  • Dong W, Wang W, Li J (2008a) A multiscale mass transfer model for gas-solid riser flows: part I—sub-grid model and simple tests. Chem Eng Sci 63:2798–2810

    Article  Google Scholar 

  • Dong W, Wang W, Li J (2008b) A multiscale mass transfer model for gas-solid riser flows: part II—sub-grid simulation of ozone decomposition. Chem Eng Sci 63:2811–2823

    Article  Google Scholar 

  • Ge W, Chen F, Gao J, Gao S, Huang J, Liu X, Ren Y, Sun Q, Wang L, Wang W, Yang N, Zhang J, Zhao H, Zhou G, Li J (2007) Analytical multiscale method for multi-phase complex systems in process engineering–bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377

    Article  Google Scholar 

  • Ge W, Wang W, Ren Y, Li J (2008) More opportunities than challenges–perspectives on chemical engineering. Curr Sci 95(9):1310–1316

    Google Scholar 

  • Ge W, Wang W, Yang N, Li J, Kwauk M, Chen F, Chen J, Fang X, Guo L, He X, Liu X, Liu Y, Lu B, Wang J, Wang J, Wang L, Wang X, Xiong Q, Xu M, Deng L, Han Y, Hou C, Hua L, Huang W, Li B, Li C, Li F, Ren Y, Xu J, Zhang N, Zhang Y, Zhou G, Zhou G (2011) Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem Eng Sci 66(19):4426–4458

    Article  Google Scholar 

  • Glimm J, Sharp DH (1997) Multiscale science. SIAM News

    Google Scholar 

  • Hinze JO (1975) Turbulence. McGraw-Hill, New York

    Google Scholar 

  • Huang W, Li J (2012) Personal communication, Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85

    Article  MathSciNet  MATH  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163

    Article  Google Scholar 

  • Levenspiel O (1962) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  • Li J (1987) Multiscale-modeling and method of energy minimization for particle-fluid two-phase flow. Ph.D. Thesis, Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Li J (1998) Gas-solid mass transfer in circulating fluidized beds. Ph.D. Thesis, Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multiscale method. Metallurgical Industry Press, Beijing

    Google Scholar 

  • Li J, Kwauk M (2002) Exploring complex systems in chemical engineering—the multiscale methodology. Plenary lecture, ISCRE 17, Hong Kong, 25–29 Aug 2002

    Google Scholar 

  • Li J, Kwauk M (2003) Exploring complex systems in chemical engineering: the multiscale methodology. Chem Eng Sci 58:521–535

    Article  Google Scholar 

  • Li J, Tung Y, Kwauk M (1988) Multiscale modeling and method of energy minimization in particle-fluid two-phase flow. In: Basu P, Large JF (eds) Circulating fluidized bed technology II. Pergamon Press, London, pp 89–103

    Google Scholar 

  • Li J, Reh L, Kwauk M (1990) Application of the principle of energy minimization to fluid-dynamics of circulating fluidized bed. In: Basu P, Horio M, Hasatani M (eds) Circulating fluidized bed technology III. Pergamon Press, Oxford, pp 105–111

    Google Scholar 

  • Li J, Reh L, Kwauk M (1992) Role of energy minimization in gas-solid fluidization. In: Potter OE, Nicklin DJ (eds) Fluidization VII. Engineering Foundation, New York, pp 83–91

    Google Scholar 

  • Li J, Chen A, Yan Z, Xu G, Zhang X (1993) Particle-fluid contacting in circulating fluidized beds. In: Avidan AA (ed) Preprint of the fourth international conference on circulating fluidized beds. Hidden Valley, pp 49–54

    Google Scholar 

  • Li J, Wen L, Ge W, Cui H, Ren J (1998) Dissipative structure in concurrent-up gas-solid flow. Chem Eng Sci 53:3367–3379

    Article  Google Scholar 

  • Li J, Zhang Z, Ge W, Sun Q, Yuan J (1999) A simple variational criterion for turbulent flow in pipe. Chem Eng Sci 54(8):1151–1154

    Article  Google Scholar 

  • Li J, Zhang J, Ge W, Liu X (2004) Multiscale methodology for complex systems. Chem Eng Sci 59:1687–1700

    Article  Google Scholar 

  • Li J, Ouyang J, Gao S, Ge W, Yang N, Song W (2005) Multiscale simulation of particle-fluid complex systems. Science Press, Beijing

    Google Scholar 

  • Li J, Ge W, Kwauk M (2009) Meso-scale phenomena from compromise–a common challenge, not only for chemical engineering. Arxiv preprint arXiv:0912.5407

    Google Scholar 

  • Li J, Ge W, Wang W, Yang N (2010) Focusing on the meso-scales of multiscale phenomena—in search for a new paradigm in chemical engineering. Particuology 8(6):634–639

    Article  Google Scholar 

  • Li J, Huang W, Edwards P, Kwauk M, Houghton J, Slocombe D (2013) On universality of mesoscience: science of ‘the in-between’. http://arxiv.org/abs/1302.5861

  • Liu X, Guo L, Xia Z, Lu B, Zhao M, Meng F, Li Z, Li J (2012) Harnessing the power of virtual reality. Chem Eng Prog 108:28–33

    Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  • Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255

    Article  Google Scholar 

  • Syamlal M, Guenther C, Cugini A, Ge W, Wang W, Yang N, Li J (2011) Computational science: enabling technology development. Chem Eng Prog 107(1):23–29

    Google Scholar 

  • Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541

    Article  Google Scholar 

  • Walker WH, Lewis WK, McAdams WH (1923) Principles of chemical engineering. McGraw-Hill, New York

    Google Scholar 

  • Wang L, Ge W, Li J (2007) “Single-phase turbulence”, as a whole section, in Ge W, Chen F, Gao J, Gao S, Huang J, Liu X, Ren Y, Sun Q, Wang L, Wang W, Yang N, Zhang J, Zhao H, Zhou G, Li J (2007) Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism. Chem Eng Sci 62(13):3346–3377

    Google Scholar 

  • Wang H, Han Y, Li J (2013) Dominant role of compromise between diffusion and reaction in the formation of snow-shaped vaterite. Cryst Growth Des (under revision)

    Google Scholar 

  • Wang L, Jin D, Li J (2003) Effect of dynamic change of flow structure on mass transfer between gas and particles. Chem Eng Sci 58(23–24):5373–5377

    Google Scholar 

  • Wang Z, Carter JA, Lagutchev A, Koh YK, Seong NH, Cahill DG, Dlott DD (2007) Ultrafast flash thermal conductance of molecular chains. Science 317(5839):787–790

    Article  Google Scholar 

  • Wei J (1996) A century of changing paradigms in chemical engineering. ChemTech 26(5):16–18

    Google Scholar 

  • Xu J, Ren Y, Li J (2013) Multiscale simulations of protein folding: application to formation of secondary structures. J Biomol Struct Dyn. doi:10.1080/07391102.2012.709461

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, J. et al. (2013). Footprint and Philosophy. In: From Multiscale Modeling to Meso-Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35189-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35189-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35188-4

  • Online ISBN: 978-3-642-35189-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics