Model Checking Using Generalized Testing Automata

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7400)


Geldenhuys and Hansen showed that a kind of ω-automata known as Testing Automata (TA) can, in the case of stuttering-insensitive properties, outperform the Büchi automata traditionally used in the automata-theoretic approach to model checking [10].

In previous work [23], we compared TA against Transition-based Generalized Büchi Automata (TGBA), and concluded that TA were more interesting when counterexamples were expected, otherwise TGBA were more efficient.

In this work we introduce a new kind of automata, dubbed Transition-based Generalized Testing Automata (TGTA), that combine ideas from TA and TGBA. Implementation and experimentation of TGTA show that they outperform other approaches in most of the cases.


testing automata model checking emptiness check 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Translation: Fast and More Deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Efficient Symbolic State-Space Construction for Asynchronous Systems. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 103–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cichoń, J., Czubak, A., Jasiński, A.: Minimal Büchi automata for certain classes of LTL formulas. In: Proceedings of the Fourth International Conference on Dependability of Computer Systems, DEPCOS 2009, pp. 17–24. IEEE Computer Society (2009)Google Scholar
  4. 4.
    Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-Fly Emptiness Checks for Generalized Büchi Automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 169–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Duret-Lutz, A.: LTL translation improvements in Spot. In: Proceedings of the 5th International Workshop on Verification and Evaluation of Computer and Communication Systems, VECoS 2011. Electronic Workshops in Computing. British Computer Society, Tunis (2011), Google Scholar
  7. 7.
    Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using transition-based generalized Büchi automata. In: Proceedings of the 12th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS 2004, pp. 76–83. IEEE Computer Society Press, Volendam (2004)CrossRefGoogle Scholar
  8. 8.
    Farwer, B.: ω-Automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 3–21. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Geldenhuys, J., Hansen, H.: Larger Automata and Less Work for LTL Model Checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Geldenhuys, J., Valmari, A.: Tarjan’s Algorithm Makes On-the-Fly LTL Verification More Efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Proceedings of the 15th Workshop on Protocol Specification Testing and Verification, PSTV 1995, pp. 3–18. Chapman & Hall, Warsaw (1995), Google Scholar
  13. 13.
    Giannakopoulou, D., Lerda, F.: From States to Transitions: Improving Translation of LTL Formulæ to Büchi Automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Hansen, H., Penczek, W., Valmari, A.: Stuttering-insensitive automata for on-the-fly detection of livelock properties. In: Cleaveland, R., Garavel, H. (eds.) Proceedings of the 7th International ERCIM Workshop in Formal Methods for Industrial Critical Systems, FMICS 2002. Electronic Notes in Theoretical Computer Science, vol. 66(2). Elsevier, Málaga (2002)Google Scholar
  15. 15.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Barrir, S., Vergnaud, T.: On the formal verification of middleware behavioral properties. In: Proceedings of the 9th International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2004. Electronic Notes in Theoretical Computer Science, vol. 133, pp. 139–157. Elsevier Science Publishers (September 2004)Google Scholar
  17. 17.
    MoVe/LRDE: The Spot home page (2012),
  18. 18.
    Pelánek, R.: Properties of state spaces and their applications. International Journal on Software Tools for Technology Transfer (STTT) 10(5), 443–454 (2008)Google Scholar
  19. 19.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. Information Processing Letters 63(5), 243–246 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116 (1981)zbMATHCrossRefGoogle Scholar
  21. 21.
    Pyarali, I., Spivak, M., Cytron, R., Schmidt, D.C.: Evaluating and optimizing thread pool strategies for RT-CORBA. In: Proceeding of the ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems, LCTES 2000, pp. 214–222. ACM (2000)Google Scholar
  22. 22.
    Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Salem, A.E.B., Duret-Lutz, A., Kordon, F.: Generalized Büchi automata versus testing automata for model checking. In: Procedings of the 2nd Workshop on Scalable and Usable Model Checking for Petri Nets and Other Models of Concurrency, SUMo 2011, vol. 726, pp. 65–79. CEUR, Newcastle (2011)Google Scholar
  24. 24.
    Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N., Zuck, L. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Sebastiani, R., Tonetta, S.: “More Deterministic” vs. “Smaller” Büchi Automata for Efficient LTL Model Checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Tauriainen, H.: Automata and Linear Temporal Logic: Translation with Transition-based Acceptance. Ph.D. thesis, Helsinki University of Technology, Espoo, Finland (September 2006)Google Scholar
  27. 27.
    Valmari, A.: Bisimilarity Minimization in O(m logn) Time. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 123–142. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  28. 28.
    Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.LRDE, EPITA, Le Kremlin-BicêtreFrance
  2. 2.LIP6, CNRS UMR 7606Université P. & M. Curie – Paris 6France

Personalised recommendations