Skip to main content

The Label Splitting Problem

  • Chapter

Part of the Lecture Notes in Computer Science book series (TOPNOC,volume 7400)

Abstract

The theory of regions was introduced by Ehrenfeucht and Rozenberg in the early nineties to explain how to derive (synthesize) an event-based model (e.g., a Petri net) from an automaton. To be applicable, the theory relies on stringent conditions on the input automaton. Although some relaxation on these restrictions was done in the last decade, in general not every automaton can be synthesized while preserving its behavior. A crucial step for a non-synthesizable automaton is to transform it in order to satisfy the synthesis conditions. This paper revisits label splitting, a technique to satisfy the synthesis conditions through renaming of problematic labels. For the first time, the problem is formally characterized and its optimality addressed. Some extensions and applications of the label splitting are presented to illustrate the significance of this technique.

Keywords

  • Transition System
  • Chromatic Number
  • Minimal Region
  • Integer Linear Programming Model
  • Reachability Graph

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35179-2_1
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-35179-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, A.: Finite Transition Systems. Prentice Hall (1994)

    Google Scholar 

  2. Bernardinello, L., Michelis, G.D., Petruni, K., Vigna, S.: On synchronic structure of transition systems. In: Proceedings of the International Workshop on Structures in Concurrency Theory (STRICT), pp. 69–84 (May 1995)

    Google Scholar 

  3. Carmona, J.: Projection approaches to process mining using region-based techniques. Data Min. Knowl. Discov. 24(1), 218–246 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Transactions on Computers 59(3), 371–384 (2009)

    MathSciNet  CrossRef  Google Scholar 

  6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill Higher Education (2001)

    Google Scholar 

  7. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)

    MathSciNet  CrossRef  Google Scholar 

  8. Desel, J., Esparza, J.: Free-choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press (1995)

    Google Scholar 

  9. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Informatica 27, 315–368 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Kishinevsky, M., Kondratyev, A., Taubin, A., Varshavsky, V.: Concurrent Hardware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, London (1993)

    Google Scholar 

  12. Murata, T.: Petri Nets: Properties, analysis and applications. Proceedings of the IEEE, 541–580 (April 1989)

    Google Scholar 

  13. Nielsen, M., Rozenberg, G., Thiagarajan, P.: Elementary transition systems. Theoretical Computer Science 96, 3–33 (1992)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn, Institut für Instrumentelle Mathematik (1962) (technical report Schriften des IIM Nr. 3)

    Google Scholar 

  15. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  16. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (May 2011)

    Google Scholar 

  17. West, D.B.: Introduction to Graph Theory. Prentice-Hall (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmona, J. (2012). The Label Splitting Problem. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds) Transactions on Petri Nets and Other Models of Concurrency VI. Lecture Notes in Computer Science, vol 7400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35179-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35179-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35178-5

  • Online ISBN: 978-3-642-35179-2

  • eBook Packages: Computer ScienceComputer Science (R0)