The Label Splitting Problem

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7400)


The theory of regions was introduced by Ehrenfeucht and Rozenberg in the early nineties to explain how to derive (synthesize) an event-based model (e.g., a Petri net) from an automaton. To be applicable, the theory relies on stringent conditions on the input automaton. Although some relaxation on these restrictions was done in the last decade, in general not every automaton can be synthesized while preserving its behavior. A crucial step for a non-synthesizable automaton is to transform it in order to satisfy the synthesis conditions. This paper revisits label splitting, a technique to satisfy the synthesis conditions through renaming of problematic labels. For the first time, the problem is formally characterized and its optimality addressed. Some extensions and applications of the label splitting are presented to illustrate the significance of this technique.


Transition System Chromatic Number Minimal Region Integer Linear Programming Model Reachability Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A.: Finite Transition Systems. Prentice Hall (1994)Google Scholar
  2. 2.
    Bernardinello, L., Michelis, G.D., Petruni, K., Vigna, S.: On synchronic structure of transition systems. In: Proceedings of the International Workshop on Structures in Concurrency Theory (STRICT), pp. 69–84 (May 1995)Google Scholar
  3. 3.
    Carmona, J.: Projection approaches to process mining using region-based techniques. Data Min. Knowl. Discov. 24(1), 218–246 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Transactions on Computers 59(3), 371–384 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill Higher Education (2001)Google Scholar
  7. 7.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Desel, J., Esparza, J.: Free-choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press (1995)Google Scholar
  9. 9.
    Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Informatica 27, 315–368 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kishinevsky, M., Kondratyev, A., Taubin, A., Varshavsky, V.: Concurrent Hardware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, London (1993)Google Scholar
  12. 12.
    Murata, T.: Petri Nets: Properties, analysis and applications. Proceedings of the IEEE, 541–580 (April 1989)Google Scholar
  13. 13.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.: Elementary transition systems. Theoretical Computer Science 96, 3–33 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn, Institut für Instrumentelle Mathematik (1962) (technical report Schriften des IIM Nr. 3)Google Scholar
  15. 15.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  16. 16.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (May 2011)Google Scholar
  17. 17.
    West, D.B.: Introduction to Graph Theory. Prentice-Hall (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universitat Politècnica de CatalunyaSpain

Personalised recommendations