Advertisement

Aggregating Causal Runs into Workflow Nets

  • Boudewijn F. van Dongen
  • Jörg Desel
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7400)

Abstract

This paper provides three aggregation algorithms for deriving system nets from sets of partially-ordered causal runs. The three algorithms differ with respect to the assumptions about the information contained in the causal runs. Specifically, we look at the situations where labels of conditions (i.e. references to places) or events (i.e. references to transitions) are unknown. Since the paper focuses on aggregation in the context of process mining, we solely look at workflow nets, i.e. a class of Petri nets with unique start and end places. The difference of the work presented here and most work on process mining is the assumption that events are logged as partial orders instead of linear traces. Although the work is inspired by applications in the process mining and workflow domains, the results are generic and can be applied in other application domains.

Keywords

Condition Graph Condition Coloring Connected Subgraph Label Function Condition Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters, A.J.M.M.T.: Genetic Process Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decidability, and Analysis. Formal Aspects of Computing 23(3), 333–363 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  8. 8.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from Finite Partial Languages. Fundamenta Informatica 88(1), 437–468 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri Nets from Term Based Representations of Infinite Partial Languages. Fundamenta Informatica 95(1), 187–217 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  13. 13.
    Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)CrossRefGoogle Scholar
  14. 14.
    Desel, J.: Validation of Process Models by Construction of Process Nets. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 110–128. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time perspective. Computer Systems Science and Engineering 5, 291–302 (2000)Google Scholar
  16. 16.
    Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Informatica 33, 297–315 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Process Mining: Aggregating Instance Graphs into EPCs and Petri Nets. In: PNCWB 2005 Workshop, pp. 35–58 (2005)Google Scholar
  19. 19.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica 27(4), 315–368 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering Expressive Process Models by Clustering Log Traces. IEEE Transaction on Knowledge and Data Engineering 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  21. 21.
    Harel, D., Kugler, H.-J., Pnueli, A.: Synthesis Revisited: Generating Statechart Models from Scenario-Based Requirements. In: Kreowski, H.-J., Montanari, U., Yu, Y., Rozenberg, G., Taentzer, G. (eds.) Formal Methods (Ehrig Festschrift). LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Herbst, J.: A Machine Learning Approach to Workflow Management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Herbst, J., Karagiannis, D.: Workflow mining with InWoLvE. Computers in Industry 53(3), 245–264 (2004)CrossRefGoogle Scholar
  24. 24.
    Lorenz, R., Juhás, G.: Towards Synthesis of Petri Nets from Scenarios. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 302–321. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Roychoudhury, A., Thiagarajan, P.S.: Communicating Transaction Processes. In: Lilius, J., Balarin, F., Machado, R. (eds.) Proceedings of Third International Conference on Application of Concurrency to System Design (ACSD 2003), pp. 157–166. IEEE Computer Society (2003)Google Scholar
  27. 27.
    Smith, E.: On Net Systems Generated by Process Foldings. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 253–276. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  28. 28.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar
  29. 29.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discovery using Integer Linear Programming. Fundamenta Informaticae 94, 387–412 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Boudewijn F. van Dongen
    • 1
  • Jörg Desel
    • 2
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands
  2. 2.Department of Software EngineeringFernUniversität in HagenGermany

Personalised recommendations