Advertisement

Scalable Geo-thematic Query Answering

  • Özgür Lütfü Özçep
  • Ralf Möller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

First order logic (FOL) rewritability is a desirable feature for query answering over geo-thematic ontologies because in most geo-processing scenarios one has to cope with large data volumes. Hence, there is a need for combined geo-thematic logics that provide a sufficiently expressive query language allowing for FOL rewritability. The DL-Lite family of description logics is tailored towards FOL rewritability of query answering for unions of conjunctive queries, hence it is a suitable candidate for the thematic component of a combined geo-thematic logic. We show that a weak coupling of DL-Lite with the expressive region connection calculus RCC8 allows for FOL rewritability under a spatial completeness condition for the ABox. Stronger couplings allowing for FOL rewritability are possible only for spatial calculi as weak as the low-resolution calculus RCC2. Already a strong combination of DL-Lite with the low-resolution calculus RCC3 does not allow for FOL rewritability.

Keywords

FOL rewritability description logics region connection calculus qualitative spatial reasoning GIS combined logic 

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. Technical Report CL-RR-10-21, Oxford University Computing Laboratory (November 2010)Google Scholar
  3. 3.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and Databases: The DL-Lite Approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Grigni, M., Papadias, D., Papadimitriou, C.H.: Topological inference. In: IJCAI (1), pp. 901–907 (1995)Google Scholar
  5. 5.
    Haarslev, V., Lutz, C., Möller, R.: A description logic with concrete domains and a role-forming predicate operator. J. Log. Comput. 9(3), 351–384 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kaplunova, A., Möller, R., Wandelt, S., Wessel, M.: Towards Scalable Instance Retrieval over Ontologies. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 436–448. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kuper, G.M., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer (2000)Google Scholar
  8. 8.
    Lutz, C., Miličić, M.: A tableau algorithm for description logics with concrete domains and general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Özçep, Ö.L., Möller, R.: Combining DL-Lite with spatial calculi for feasible geo-thematic query answering. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of the 25th Iternational Workshop on Description Logics (DL 2012), vol. 846 (2012), http://ceur-ws.org/Vol-846/
  10. 10.
    Özçep, Ö.L., Möller, R.: Computationally feasible query answering over spatio-thematic ontologies. In: Proceedings of GEOProcessing 2012, The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services (2012), http://www.thinkmind.org/index.php?view=article&articleid=geoprocessing_2012_7_10_30059
  11. 11.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conferecence on Knowledge Representation and Reasoning, pp. 165–176 (1992)Google Scholar
  12. 12.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008), http://doi.acm.org/10.1145/1391289.1391291 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Renz, J.: Qualitative Spatial Reasoning with Topological Information. LNCS (LNAI), vol. 2293. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 161–215. Springer, Netherlands (2007)CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Muro, M., Calvanese, D.: Semantic index: Scalable query answering without forward chaining or exponential rewritings. Posters of the 10th Int. Semantic Web Conf., ISWC 2011 (2011)Google Scholar
  16. 16.
    Wessel, M.: On spatial reasoning with description logics - position paper. In: Ian Horrocks, S.T. (ed.) Proceedings of the International Workshop on Description Logics (DL 2002). CEUR Workshop Proceedings, vol. 53 (2002), http://CEUR-WS.org/Vol-53/
  17. 17.
    Wessel, M.: Qualitative spatial reasoning with the \(\mathcal{ALCI}_{RCC}\)- family — first results and unanswered questions. Technical Report FBI–HH–M–324/03, University of Hamburg, Department for Informatics (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Özgür Lütfü Özçep
    • 1
  • Ralf Möller
    • 1
  1. 1.Institute for Software Systems (STS)Hamburg University of TechnologyHamburgGermany

Personalised recommendations