A Formal Semantics for Weighted Ontology Mappings

  • Manuel Atencia
  • Alexander Borgida
  • Jérôme Euzenat
  • Chiara Ghidini
  • Luciano Serafini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)


Ontology mappings are often assigned a weight or confidence factor by matchers. Nonetheless, few semantic accounts have been given so far for such weights. This paper presents a formal semantics for weighted mappings between different ontologies. It is based on a classificational interpretation of mappings: if O 1 and O 2 are two ontologies used to classify a common set X, then mappings between O 1 and O 2 are interpreted to encode how elements of X classified in the concepts of O 1 are re-classified in the concepts of O 2, and weights are interpreted to measure how precise and complete re-classifications are. This semantics is justifiable by extensional practice of ontology matching. It is a conservative extension of a semantics of crisp mappings. The paper also includes properties that relate mapping entailment with description logic constructors.


  1. 1.
    Atencia, M., Borgida, A., Euzenat, J., Ghidini, C., Serafini, L.: A formal semantics for weighted ontology mappings. Tech. Rep. 81401, Fondazione Bruno Kessler - IRST (2012)Google Scholar
  2. 2.
    Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-Based Description Logics. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 349–371. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from Peer Sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Calvanese, D.: Unrestricted and finite model reasoning in class-based representation formalisms. Number viii-96-2 of collana delle tesi del dottorato di ricerca in informatica, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza” (1996)Google Scholar
  5. 5.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  6. 6.
    Gal, A.: Uncertain Schema Matching. Synthesis Lectures on Data Management. Morgan & Claypool (2011)Google Scholar
  7. 7.
    Grau, B.C., Parsia, B., Sirin, E.: Combining owl ontologies using epsilon-connections. Journal of Web Semantics 4(1), 40–59 (2006)CrossRefGoogle Scholar
  8. 8.
    Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2003)Google Scholar
  9. 9.
    Heinsohn, J.: Probabilistic description logics. In: UAI 1994: Proceedings of the 10th Annual Conference on Uncertainty in Artificial Intelligence, pp. 311–318. Morgan Kaufmann (1994)Google Scholar
  10. 10.
    Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description logic. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 390–397. AAAI Press (1997)Google Scholar
  11. 11.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7), 852–883 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. Annals of Mathematics and Artificial Intelligence 63(3-4), 385–425 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics 6(4), 291–308 (2008)CrossRefGoogle Scholar
  14. 14.
    Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press (2010)Google Scholar
  15. 15.
    Tournaire, R., Petit, J.-M., Rousset, M.-C., Termier, A.: Discovery of Probabilistic Mappings between Taxonomies: Principles and Experiments. In: Spaccapietra, S. (ed.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 66–101. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Zimmermann, A., Euzenat, J.: Three Semantics for Distributed Systems and Their Relations with Alignment Composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel Atencia
    • 1
    • 2
  • Alexander Borgida
    • 3
  • Jérôme Euzenat
    • 1
    • 2
  • Chiara Ghidini
    • 4
  • Luciano Serafini
    • 4
  1. 1.INRIAFrance
  2. 2.University of GrenobleFrance
  3. 3.Rutgers UniversityUnited States
  4. 4.Fondazione Bruno KesslerItaly

Personalised recommendations