Advertisement

The Not-So-Easy Task of Computing Class Subsumptions in OWL RL

  • Markus Krötzsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

The lightweight ontology language OWL RL is used for reasoning with large amounts of data. To this end, the W3C standard provides a simple system of deduction rules, which operate directly on the RDF syntax of OWL. Several similar systems have been studied. However, these approaches are usually complete for instance retrieval only. This paper asks if and how such methods could also be used for computing entailed subclass relationships. Checking entailment for arbitrary OWL RL class subsumptions is co-NP-hard, but tractable rule-based reasoning is possible when restricting to subsumptions between atomic classes. Surprisingly, however, this cannot be achieved in any RDF-based rule system, i.e., the W3C calculus cannot be extended to compute all atomic class subsumptions. We identify syntactic restrictions to mitigate this problem, and propose a rule system that is sound and complete for many OWL RL ontologies.

Keywords

Class Expression Rule System Proof Tree Blank Node Instance Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)Google Scholar
  2. 2.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: a family of scalable semantic repositories. Semantic Web Journal 2(1), 33–42 (2011)Google Scholar
  3. 3.
    Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclicity conditions and their application to query answering in description logics. In: Proc. 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 243–253. AAAI Press (2012)Google Scholar
  4. 4.
    Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull. 35(1), 3–8 (2012)Google Scholar
  5. 5.
    Franz Inc.: AllegroGraph RDFStore: Web 3.0’s Database (2012), http://www.franz.com/agraph/allegrograph/ (accessed April 2012)
  6. 6.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-primer/
  7. 7.
    Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the Web. Int. J. of Semantic Web Inf. Syst. 5(2), 49–90 (2009)CrossRefGoogle Scholar
  8. 8.
    Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations for Distributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. J. of Web Semantics 3(2-3), 79–115 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kazakov, Y., Krötzsch, M., Simančík, F.: Practical reasoning with nominals in the \(\mathcal{EL}\) family of description logics. In: Proc. 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 264–274. AAAI Press (2012)Google Scholar
  11. 11.
    Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (June 22, 2010), http://www.w3.org/TR/rif-overview/
  12. 12.
    Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 436–452. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by speeddating in elastic regions. In: Proc. 19th Int. Conf. on World Wide Web (WWW 2010), pp. 531–540. ACM (2010)Google Scholar
  14. 14.
    Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Walsh, T. (ed.) Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 2668–2673. AAAI Press/IJCAI (2011)Google Scholar
  15. 15.
    Krötzsch, M.: The (not so) easy task of computing class subsumptions in OWL RL. Tech. rep., University of Oxford (2012), http://korrekt.org/page/OWLRL2012
  16. 16.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology Language: Profiles. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-profiles/
  17. 17.
    Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-syntax/
  18. 18.
    Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to RDF Graphs. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-mapping-to-rdf/
  19. 19.
    Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the Web. In: Proc. 17th Int. Conf. on World Wide Web (WWW 2008), pp. 585–594. ACM (2008)Google Scholar
  20. 20.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: a Web-scale parallel inference engine using MapReduce. J. of Web Semantics 10, 59–75 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Krötzsch
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordUK

Personalised recommendations