Cost Based Query Ordering over OWL Ontologies

  • Ilianna Kollia
  • Birte Glimm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)


The paper presents an approach for cost-based query planning for SPARQL queries issued over an OWL ontology using the OWL Direct Semantics entailment regime of SPARQL 1.1. The costs are based on information about the instances of classes and properties that are extracted from a model abstraction built by an OWL reasoner. A static and a dynamic algorithm are presented which use these costs to find optimal or near optimal execution orders for the atoms of a query. For the dynamic case, we improve the performance by exploiting an individual clustering approach that allows for computing the cost functions based on one individual sample from a cluster. Our experimental study shows that the static ordering usually outperforms the dynamic one when accurate statistics are available. This changes, however, when the statistics are less accurate, e.g., due to non-deterministic reasoning decisions.


Description Logic Execution Plan Dynamic Algorithm Conjunctive Query SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic SHIQ. Journal of Artificial Intelligence Research 31, 151–198 (2008)MathSciNetGoogle Scholar
  3. 3.
    Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology classification. Journal of Web Semantics: Science, Services and Agents on the World Wide Web (accepted, 2012)Google Scholar
  4. 4.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web Semantics 3(2-3), 158–182 (2005)CrossRefGoogle Scholar
  5. 5.
    Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. Autom. Reason. 41(2), 99–142 (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kazakov, Y.: \(\mathcal{RIQ}\) and \(\mathcal{SROIQ}\) are harder than \(\mathcal{SHOIQ}\). In: Brewka, G., Lang, J. (eds.) Proc. 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press (2008)Google Scholar
  7. 7.
    Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontologies. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 382–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL Ontology Benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. Journal of Artificial Intelligence Research 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sirin, E., Parsia, B.: Optimizations for answering conjunctive ABox queries: First results. In: Proc. of the Int. Description Logics Workshop, DL (2006)Google Scholar
  11. 11.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)CrossRefGoogle Scholar
  12. 12.
    Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the join ordering problem. VLDB Journal 6, 191–208 (1997)CrossRefGoogle Scholar
  13. 13.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: Proceedings of the 17th International Conference on World Wide Web, WWW 2008, pp. 595–604. ACM, New York (2008)Google Scholar
  14. 14.
    Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for expressive description logics. J. Autom. Reasoning 39(3), 277–316 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ilianna Kollia
    • 1
    • 2
  • Birte Glimm
    • 1
  1. 1.University of UlmGermany
  2. 2.National Technical University of AthensGreece

Personalised recommendations