Advertisement

Formal Verification of Data Provenance Records

  • Szymon Klarman
  • Stefan Schlobach
  • Luciano Serafini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7649)

Abstract

Data provenance is the history of derivation of a data artifact from its original sources. As the real-life provenance records can likely cover thousands of data items and derivation steps, one of the pressing challenges becomes development of formal frameworks for their automated verification.

In this paper, we consider data expressed in standard Semantic Web ontology languages, such as OWL, and define a novel verification formalism called provenance specification logic, building on dynamic logic. We validate our proposal by modeling the test queries presented in The First Provenance Challenge, and conclude that the logic core of such queries can be successfully captured in our formalism.

Keywords

Model Check Description Logic Conjunctive Query Satisfaction Relation Path Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34 (2005)Google Scholar
  2. 2.
    Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche, J.V.: The open provenance model — core specification (v1.1). Future Generation Computer Systems 27 (2010)Google Scholar
  3. 3.
    Sahoo, S.S., Sheth, A., Henson, C.: Semantic Provenance for eScience: Managing the Deluge of Scientific Data. IEEE Internet Computing 12(4) (2008)Google Scholar
  4. 4.
    Miles, S., Wong, S.C., Fang, W., Groth, P., Zauner, K.P., Moreau, L.: Provenance-based validation of e-science experiments. Web Semantics 5 (2007)Google Scholar
  5. 5.
    Moreau, L., et al.: Special issue: The first provenance challenge. Concurrency and Computation: Practice and Experience 20 (2008)Google Scholar
  6. 6.
    Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The description logic handbook: theory, implementation, and applications. Cambridge University Press (2003)Google Scholar
  7. 7.
    Groth, P., Gil, Y.: Editorial - using provenance in the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 9(2) (2011)Google Scholar
  8. 8.
    Golbeck, J., Hendler, J.: A semantic web approach to the provenance challenge. Concurrency and Computation: Practice and Experience 20(5) (2008)Google Scholar
  9. 9.
    Moreau, L.: Provenance-based reproducibility in the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 9(2) (2011)Google Scholar
  10. 10.
    Bonatti, P.A., Hogan, A., Polleres, A., Sauro, L.: Robust and scalable linked data reasoning incorporating provenance and trust annotations. Web Semantics: Science, Services and Agents on the World Wide Web 9(2) (2011)Google Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)Google Scholar
  12. 12.
    Lange, M.: Model checking propositional dynamic logic with all extras. Journal of Applied Logic 4(1) (2006)Google Scholar
  13. 13.
    Wolter, F., Zakharyaschev, M.: Dynamic description logics. In: Proceedings of AiML 1998 (2000)Google Scholar
  14. 14.
    Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proceedings of ICDT 2009 (2009)Google Scholar
  15. 15.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Actions and programs over description logic knowledge bases: A functional approach. In: Lakemeyer, G., McIlraith, S.A. (eds.) Knowing, Reasoning, and Acting: Essays in Honour of Hector Levesque. College Publications (2011)Google Scholar
  16. 16.
    Karamanolis, C.T., Giannakopoulou, D., Magee, J., Wheater, S.M.: Model checking of workflow schemas. In: Proceedings of EDOC 2000 (2000)Google Scholar
  17. 17.
    Motik, B.: OWL 2 web ontology language profiles. Technical report, W3C Recommendation (2009), http://www.w3.org/TR/owl2-profiles/
  18. 18.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proceedings of KR 2006 (2006)Google Scholar
  19. 19.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic SHIQ. Journal of Artificial Intelligence Research (2007)Google Scholar
  20. 20.
    da Silva, P.P., McGuinness, D.L., Fikes, R.: A proof markup language for semantic web services. Journal of Information Systems - Special Issue: The Semantic Web and Web Services 31(4) (2006)Google Scholar
  21. 21.
    Mcguinness, D.L., Ding, L., Silva, P.P.D., Chang, C.: Pml2: A modular explanation interlingua. In: Proceedings of ExaCt 2007 (2007)Google Scholar
  22. 22.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical report, W3C Recom. (2008), http://www.w3.org/TR/rdf-sparql-query/
  23. 23.
    Belhajjame, K., et al.: The PROV Ontology: Model and formal semantics. Technical report, W3C Draft (2011), http://dvcs.w3.org/hg/prov/raw-file/default/ontology/ProvenanceFormalModel.html
  24. 24.
    Klarman, S., Schlobach, S., Serafini, L.: Formal verification of data provenance records. Technical report (2012), http://klarman.synthasite.com/resources/KlaEtAlISWC12.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Szymon Klarman
    • Stefan Schlobach
      • Luciano Serafini
        • 1
      1. 1.Fondazione Bruno KesslerTrentoItaly

      Personalised recommendations