Advanced Materials Modelling for Structures pp 9-16

Part of the Advanced Structured Materials book series (STRUCTMAT, volume 19) | Cite as

Surface Viscoelasticity and Effective Properties of Materials and Structures

Chapter

Abstract

In this paper we discuss the influence of surface viscoelasticity on the effective properties of materials such as effective bending stiffness of plates or shells. Viscoelasticity in the vicinity of the surface can differ from the properties of the bulk material, in general. This difference influences the behavior of nanosized thin elements. In particular, the surface viscoelastic stresses are responsible for the size-depended dissipation of nanosized structures. Extending of the Gurtin-Murdoch model and using the correspondence principle of the linear viscoelasticity we derive the expressions of the stress resultant tensors for shear deformable plates and shells.

Keywords

Surface stresses Surface viscoelasticity Shell Plate Constitutive equations Effective properties 

References

  1. 1.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)CrossRefGoogle Scholar
  2. 2.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2008)Google Scholar
  3. 3.
    Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nano-structured materials. Proc. Royal Soc. Lond. A 462(2069), 1355–1363 (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica 24(1), 52–82 (2011)Google Scholar
  5. 5.
    Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)CrossRefGoogle Scholar
  6. 6.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Linear theory of shells taking into account surface stresses. Doklady Phys. 54(12), 531–535 (2009)CrossRefGoogle Scholar
  7. 7.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)CrossRefGoogle Scholar
  8. 8.
    Dahmen, K., Lehwald, S., Ibach, H.: Bending of crystalline plates under the influence of surface stress—a finite element analysis. Surf. Sci. 446(1–2), 161–173 (2000)CrossRefGoogle Scholar
  9. 9.
    Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)CrossRefGoogle Scholar
  10. 10.
    Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45(2), 568–579 (2008)CrossRefGoogle Scholar
  11. 11.
    Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43(16), 4631–4647 (2006)CrossRefGoogle Scholar
  12. 12.
    Wang, Z.Q., Zhao, Y.P.: Self-instabilityand bending behaviors of nano plates. Acta Mechanica Solida Sinica 22(6), 630–643 (2009)Google Scholar
  13. 13.
    Zhu, H.X., Wang, J.X., Karihaloo, B.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mat. Struct. 4(3), 589–604 (2009)CrossRefGoogle Scholar
  14. 14.
    Seoánez, C., Guinea, F., Castro Neto, A.H.: Surface dissipation in nanoelectromechanical systems: unified description with the standard tunneling model and effects of metallic electrodes. Phys. Rev. B 77(12), 125107 (2008)Google Scholar
  15. 15.
    Ru, C.Q.: Size effect of dissipative surface stress on quality factor of microbeams. Appl. Phys. Lett. 94, 051905-1–051905-3 (2009)Google Scholar
  16. 16.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)Google Scholar
  17. 17.
    Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41(9), 1499–1514 (1993)CrossRefGoogle Scholar
  18. 18.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)CrossRefGoogle Scholar
  19. 19.
    Christensen, R.M.: Theory of Viscoelasticity. An Introduction. Academic Press, New York (1971)Google Scholar
  20. 20.
    Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Springer, Berlin (1989)CrossRefGoogle Scholar
  21. 21.
    Altenbach, H., Eremeyev, V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mechanica 204(3–4), 137–154 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringOtto-von-Guericke-UniversityMagdeburgGermany
  2. 2.South Scientific Center of RASci & South Federal UniversityRostov on DonRussia

Personalised recommendations